#line 2 "nachia\\array\\csr-array.hpp" #include #include #include namespace nachia{ template class CsrArray{ public: struct ListRange{ using iterator = typename std::vector::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange{ using iterator = typename std::vector::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector m_list; std::vector m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, std::vector> items){ CsrArray res; res.m_n = n; std::vector buf(n+1, 0); for(auto& [u,v] : items){ ++buf[u]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; res.m_list.resize(buf[n]); for(int i=(int)items.size()-1; i>=0; i--){ res.m_list[--buf[items[i].first]] = std::move(items[i].second); } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector list, std::vector pos){ CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia #line 3 "nachia\\tree\\centroid-decomposition.hpp" namespace nachia{ struct CentroidDecomposition { int n; CsrArray adj; std::vector cdep; std::vector cp; std::vector cbfs; int maxdep; CentroidDecomposition(CsrArray edges) : adj(std::move(edges)){ n = adj.size(); std::vector Z(n, 1); std::vector P(n, -1); std::vector I(n, 0); cbfs.resize(n); int cbfsp = 0; int quep = 1; for(int p : I) for(int e : adj[p]) if(P[p] != e) P[I[quep++] = e] = p; for(int i=n-1; i>=1; i--) Z[P[I[i]]] += Z[I[i]]; cp.assign(n, -1); cdep.assign(n, 0); quep = 1; for(int s : I){ int ss = s, par = P[s]; P[s] = -1; while(true){ int nx = -1; for(int e : adj[s]) if (Z[e] * 2 > Z[s]) nx = e; if(nx == -1) break; Z[s] -= Z[nx]; Z[nx] += Z[s]; P[s] = nx; P[nx] = -1; s = nx; } cbfs[cbfsp++] = s; Z[s] = 0; if(par != -1){ cdep[s] = cdep[par] + 1; cp[s] = par; } for(int e : adj[s]) if(Z[e] != 0) P[I[quep++] = e] = ss; } maxdep = 0; for(int a : cdep) maxdep = std::max(maxdep, a); } struct BFSUnit { std::vector I; std::vector P; }; BFSUnit bfs_layer(int s, int layer) { BFSUnit res; if(cdep[s] < layer) return res; res.I.push_back(s); res.P.push_back(-1); for(int i=0; i<(int)res.I.size(); i++){ int p = res.I[i]; for(int e : adj[p]) if(res.P[i] != e){ if(cdep[e] < layer) continue; res.I.push_back(e); res.P.push_back(p); } } return res; } }; } // namespace nachia #line 4 "nachia\\graph\\graph.hpp" #include #line 6 "nachia\\graph\\graph.hpp" namespace nachia{ struct Graph { public: struct Edge{ int from, to; void reverse(){ std::swap(from, to); } }; using Base = std::vector>; Graph(int n = 0, bool undirected = false) : m_n(n), m_e(), m_isUndir(undirected) {} Graph(int n, const std::vector>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){ m_e.resize(edges.size()); for(std::size_t i=0; i& edges, bool undirected = false) : m_n(n), m_e(edges), m_isUndir(undirected) {} Graph(int n, std::vector&& edges, bool undirected = false) : m_n(n), m_e(edges), m_isUndir(undirected) {} int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addNode() noexcept { return m_n++; } int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin(){ return m_e.begin(); } auto end(){ return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector& mapping){ assert(numVertices() == int(mapping.size())); for(int i=0; i induce(int num, const std::vector& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for(int i=0; i indexV(n), newV(num); for(int i=0; i= 0) indexV[i] = newV[mapping[i]]++; std::vector res; res.reserve(num); for(int i=0; i= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray getEdgeIndexArray(bool undirected) const { std::vector> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(int i=0; i::Construct(numVertices(), src); } CsrArray getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray getAdjacencyArray(bool undirected) const { std::vector> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(auto e : m_e){ src.emplace_back(e.from, e.to); if(undirected) src.emplace_back(e.to, e.from); } return CsrArray::Construct(numVertices(), src); } CsrArray getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector m_e; bool m_isUndir; }; } // namespace nachia #line 4 "nachia\\fps\\formal-power-series-struct.hpp" #include #line 6 "nachia\\fps\\formal-power-series-struct.hpp" #include #line 4 "nachia\\math-modulo\\modulo-primitive-root.hpp" namespace nachia{ template struct PrimitiveRoot{ static constexpr unsigned long long powm(unsigned long long a, unsigned long long i) { unsigned long long res = 1, aa = a; while(i){ if(i & 1) res = res * aa % MOD; aa = aa * aa % MOD; i /= 2; } return res; } static constexpr bool ExamineVal(unsigned int g){ unsigned int t = MOD - 1; for(unsigned long long d=2; d*d<=t; d++) if(t % d == 0){ if(powm(g, (MOD - 1) / d) == 1) return false; while(t % d == 0) t /= d; } if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false; return true; } static constexpr unsigned int GetVal(){ for(unsigned int x=2; x class Comb{ private: std::vector F; std::vector iF; public: void extend(int newN){ int prevN = (int)F.size() - 1; if(prevN >= newN) return; F.resize(newN+1); iF.resize(newN+1); for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i); iF[newN] = F[newN].inv(); for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i); } Comb(int n = 1){ F.assign(2, Modint(1)); iF.assign(2, Modint(1)); extend(n); } Modint factorial(int n) const { return F[n]; } Modint invFactorial(int n) const { return iF[n]; } Modint invOf(int n) const { return iF[n] * F[n-1]; } Modint comb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[r] * iF[n-r]; } Modint invComb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[r] * F[n-r]; } Modint perm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[n-r]; } Modint invPerm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[n-r]; } Modint operator()(int n, int r) const { return comb(n,r); } }; } // namespace nachia #line 4 "nachia\\misc\\bit-operations.hpp" namespace nachia{ int Popcount(unsigned long long c) noexcept { #ifdef __GNUC__ return __builtin_popcountll(c); #else c = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3)); c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5)); c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17)); c = (c * (~0ull/257)) >> 56; return c; #endif } // please ensure x != 0 int MsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return 63 - __builtin_clzll(x); #else int res = 0; for(int d=32; d>=0; d>>=1) if(x >> d){ res |= d; x >>= d; } return res; #endif } // please ensure x != 0 int LsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return __builtin_ctzll(x); #else return msb_idx(x & -x); #endif } } #line 2 "nachia\\fps\\ntt-interface.hpp" namespace nachia { template struct NttInterface{ template void Butterfly(Iter, int) const {} template void IButterfly(Iter, int) const {} template void BitReversal(Iter a, int N) const { for(int i=0, j=0; j>1; k > (i^=k); k>>=1); } } }; } // namespace nachia #line 5 "nachia\\fps\\ntt-acl.hpp" #include #line 8 "nachia\\fps\\ntt-acl.hpp" #include namespace nachia{ constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } template struct NttFromAcl : NttInterface { using u32 = unsigned int; using u64 = unsigned long long; static int ceil_pow2(int n) { int x = 0; while ((1U << x) < (u32)(n)) x++; return x; } struct fft_info { static constexpr u32 g = nachia::PrimitiveRoot::val; static constexpr int rank2 = bsf_constexpr(mint::mod()-1); std::array root; std::array iroot; std::array rate2; std::array irate2; std::array rate3; std::array irate3; fft_info(){ root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for(int i=rank2-1; i>=0; i--){ root[i] = root[i+1] * root[i+1]; iroot[i] = iroot[i+1] * iroot[i+1]; } mint prod = 1, iprod = 1; for(int i=0; i<=rank2-2; i++){ rate2[i] = root[i+2] * prod; irate2[i] = iroot[i+2] * iprod; prod *= iroot[i+2]; iprod *= root[i+2]; } prod = 1; iprod = 1; for(int i=0; i<=rank2-3; i++){ rate3[i] = root[i+3] * prod; irate3[i] = iroot[i+3] * iprod; prod *= iroot[i+3]; iprod *= root[i+3]; } } }; template void Butterfly(RandomAccessIterator a, int n) const { int h = ceil_pow2(n); static const fft_info info; int len = 0; while(len < h){ if(h-len == 1){ int p = 1 << (h-len-1); mint rot = 1; for(int s=0; s<(1< void IButterfly(RandomAccessIterator a, int n) const { int h = ceil_pow2(n); static const fft_info info; constexpr int MOD = mint::mod(); int len = h; while(len){ if(len == 1){ int p = 1 << (h-len); mint irot = 1; for(int s=0; s<(1<<(len-1)); s++){ int offset = s << (h-len+1); for(int i=0; i> struct FormalPowerSeriesNTT { public: using MyType = FormalPowerSeriesNTT; using ElemTy = Elem; static constexpr unsigned int MOD = Elem::mod(); static const NttInst nttInst; static const unsigned int zeta = nachia::PrimitiveRoot::GetVal(); private: using u32 = unsigned int; static Elem ZeroElem() noexcept { return Elem(0); } static Elem OneElem() noexcept { return Elem(1); } static Comb comb; std::vector a; public: int size() const noexcept { return a.size(); } Elem& operator[](int x) noexcept { return a[x]; } const Elem& operator[](int x) const noexcept { return a[x]; } Elem get_coeff(int x) const noexcept { return (x < size()) ? a[x] : ZeroElem(); } static Comb& GetComb() { return comb; } static int BestNttSize(int x) noexcept { assert(x); return 1 << MsbIndex(x*2-1); } MyType& removeLeadingZeros(){ int newsz = size(); while(newsz && a[newsz-1].val() == 0) newsz--; a.resize(newsz); if((int)a.capacity() / 4 > newsz) a.shrink_to_fit(); return *this; } FormalPowerSeriesNTT(){ a = { }; } FormalPowerSeriesNTT(int new_size) : a(new_size, ZeroElem()) {} FormalPowerSeriesNTT(std::vector&& src) : a(std::move(src)) {} FormalPowerSeriesNTT(const std::vector& src) : a(src) {} MyType& ntt() { int N = 1; while (N < (int)size()) N *= 2; a.resize(N, ZeroElem()); nttInst.Butterfly(a.begin(), N); return *this; } MyType& intt() { nttInst.IButterfly(a.begin(), a.size()); Elem invN = Elem(size()).inv(); for(int i=0; i= r) return MyType(); MyType res(r - l); for(int i=l; i upper = lower MyType& capSize(int lower, int upper = -1) { if(upper < 0) upper = lower; if(upper <= (int)size()) a.resize(upper); if((int)size() <= lower) a.resize(lower, ZeroElem()); return *this; } MyType& mulEach(const MyType& other, size_t maxi = ~(size_t)0){ maxi = std::min(maxi, (size_t)std::min(size(), other.size())); for(size_t i=0; i 30) return convolution(b,a); if(sz < 0) sz = std::max(0, a.size() + b.size() - 1); std::vector res(sz); for(int i=0; i=1; i--) a[i] = a[i-1] * comb.invOf(i); a[0] = ZeroElem(); return *this; } MyType log(int sz){ assert(sz != 0); assert(a[0].val() == 1); return convolution(inv(sz), clip().difference(), sz-1).integral(); } MyType exp(int sz){ MyType res = MyType(std::vector{ OneElem() }); while(res.size() < sz){ auto z = res.size(); res = res.clip(0, z, 0, z*2); auto tmp = res.log(z*2); tmp[0] = -OneElem(); for(int i=0; i= (n-1) / k + 1) return MyType(n); MyType res = clip(ctz, n-ctz*k); Elem a0 = res[0]; ctz *= k; n -= ctz; return res.times(a0.inv()).log(n).times(Elem(k)).exp(n).times(a0.pow(k)).clip(0, n, ctz); } auto begin(){ return a.begin(); } auto end(){ return a.end(); } auto begin() const { return a.begin(); } auto end() const { return a.end(); } std::string toString(std::string beg = "[ ", std::string delim = " ", std::string en = " ]") const { std::string res = beg; bool f = false; for(auto x : a){ if(f){ res += delim; } f = true; res += std::to_string(x.val()); } res += en; return res; } std::vector get_vector_moved(){ std::vector res = std::move(a); a.clear(); return res; } MyType axPlusB(Elem a, Elem b) const { auto buf = MyType(size() + 1); for(int i=0; ia[i] * b; for(int i=0; ia[i] * a; return buf; } MyType operator+(const MyType& r) const { auto sz = std::max(this->size(), r.size()); MyType res(sz); for(int i=0; isize(); i++) res[i] += this->operator[](i); for(int i=0; isize(), r.size()); MyType res(sz); for(int i=0; isize(); i++) res[i] += this->operator[](i); for(int i=0; i=0; i--) res = res * x + a[i]; return res; } }; template Comb FormalPowerSeriesNTT::comb; template const NttInst FormalPowerSeriesNTT::nttInst; } // namespace nachia #line 2 "nachia\\math\\ext-gcd.hpp" #line 6 "nachia\\math\\ext-gcd.hpp" namespace nachia{ // ax + by = gcd(a,b) std::pair ExtGcd(long long a, long long b){ long long x = 1, y = 0; while(b){ long long u = a / b; std::swap(a-=b*u, b); std::swap(x-=y*u, y); } return std::make_pair(x, y); } } // namespace nachia #line 5 "nachia\\math-modulo\\static-modint.hpp" namespace nachia{ template struct StaticModint{ private: using u64 = unsigned long long; unsigned int x; public: using my_type = StaticModint; template< class Elem > static Elem safe_mod(Elem x){ if(x < 0){ if(0 <= x+MOD) return x + MOD; return MOD - ((-(x+MOD)-1) % MOD + 1); } return x % MOD; } StaticModint() : x(0){} StaticModint(const my_type& a) : x(a.x){} StaticModint& operator=(const my_type&) = default; template< class Elem > StaticModint(Elem v) : x(safe_mod(v)){} unsigned int operator*() const noexcept { return x; } my_type& operator+=(const my_type& r) noexcept { auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator+(const my_type& r) const noexcept { my_type res = *this; return res += r; } my_type& operator-=(const my_type& r) noexcept { auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator-(const my_type& r) const noexcept { my_type res = *this; return res -= r; } my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; } my_type& operator*=(const my_type& r)noexcept { x = (u64)x * r.x % MOD; return *this; } my_type operator*(const my_type& r) const noexcept { my_type res = *this; return res *= r; } my_type pow(unsigned long long i) const noexcept { my_type a = *this, res = 1; while(i){ if(i & 1){ res *= a; } a *= a; i >>= 1; } return res; } my_type inv() const { return my_type(ExtGcd(x, MOD).first); } unsigned int val() const noexcept { return x; } static constexpr unsigned int mod() { return MOD; } static my_type raw(unsigned int val) noexcept { auto res = my_type(); res.x = val; return res; } my_type& operator/=(const my_type& r){ return operator*=(r.inv()); } my_type operator/(const my_type& r) const { return operator*(r.inv()); } }; } #line 2 "nachia\\misc\\fastio.hpp" #include #include #include #line 6 "nachia\\misc\\fastio.hpp" namespace nachia{ struct CInStream{ private: static const unsigned int INPUT_BUF_SIZE = 1 << 17; unsigned int p = INPUT_BUF_SIZE; static char Q[INPUT_BUF_SIZE]; public: using MyType = CInStream; char seekChar() noexcept { if(p == INPUT_BUF_SIZE){ size_t len = fread(Q, 1, INPUT_BUF_SIZE, stdin); if(len != INPUT_BUF_SIZE) Q[len] = '\0'; p = 0; } return Q[p]; } void skipSpace() noexcept { while(isspace(seekChar())) p++; } uint32_t nextU32() noexcept { skipSpace(); uint32_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int32_t nextI32() noexcept { skipSpace(); if(seekChar() == '-'){ p++; return (int32_t)(-nextU32()); } return (int32_t)nextU32(); } uint64_t nextU64() noexcept { skipSpace(); uint64_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int64_t nextI64() noexcept { skipSpace(); if(seekChar() == '-'){ p++; return (int64_t)(-nextU64()); } return (int64_t)nextU64(); } char nextChar() noexcept { skipSpace(); char buf = seekChar(); p++; return buf; } std::string nextToken(){ skipSpace(); std::string buf; while(true){ char ch = seekChar(); if(isspace(ch) || ch == '\0') break; buf.push_back(ch); p++; } return buf; } MyType& operator>>(unsigned int& dest) noexcept { dest = nextU32(); return *this; } MyType& operator>>(int& dest) noexcept { dest = nextI32(); return *this; } MyType& operator>>(unsigned long& dest) noexcept { dest = nextU64(); return *this; } MyType& operator>>(long& dest) noexcept { dest = nextI64(); return *this; } MyType& operator>>(unsigned long long& dest) noexcept { dest = nextU64(); return *this; } MyType& operator>>(long long& dest) noexcept { dest = nextI64(); return *this; } MyType& operator>>(std::string& dest){ dest = nextToken(); return *this; } MyType& operator>>(char& dest) noexcept { dest = nextChar(); return *this; } } cin; struct FastOutputTable{ char LZ[1000][4] = {}; char NLZ[1000][4] = {}; constexpr FastOutputTable(){ using u32 = uint_fast32_t; for(u32 d=0; d<1000; d++){ LZ[d][0] = ('0' + d / 100 % 10); LZ[d][1] = ('0' + d / 10 % 10); LZ[d][2] = ('0' + d / 1 % 10); LZ[d][3] = '\0'; } for(u32 d=0; d<1000; d++){ u32 i = 0; if(d >= 100) NLZ[d][i++] = ('0' + d / 100 % 10); if(d >= 10) NLZ[d][i++] = ('0' + d / 10 % 10); if(d >= 1) NLZ[d][i++] = ('0' + d / 1 % 10); NLZ[d][i++] = '\0'; } } }; struct COutStream{ private: using u32 = uint32_t; using u64 = uint64_t; using MyType = COutStream; static const u32 OUTPUT_BUF_SIZE = 1 << 17; static char Q[OUTPUT_BUF_SIZE]; static constexpr FastOutputTable TB = FastOutputTable(); u32 p = 0; static constexpr u32 P10(u32 d){ return d ? P10(d-1)*10 : 1; } static constexpr u64 P10L(u32 d){ return d ? P10L(d-1)*10 : 1; } template static void Fil(T& m, U& l, U x) noexcept { m = l/x; l -= m*x; } void next_dig9(u32 x){ u32 y; Fil(y, x, P10(6)); nextCstr(TB.LZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } public: void nextChar(char c){ Q[p++] = c; if(p == OUTPUT_BUF_SIZE){ fwrite(Q, p, 1, stdout); p = 0; } } void nextEoln(){ nextChar('\n'); } void nextCstr(const char* s){ while(*s) nextChar(*(s++)); } void nextU32(uint32_t x){ u32 y = 0; if(x >= P10(9)){ Fil(y, x, P10(9)); nextCstr(TB.NLZ[y]); next_dig9(x); } else if(x >= P10(6)){ Fil(y, x, P10(6)); nextCstr(TB.NLZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } else if(x >= P10(3)){ Fil(y, x, P10(3)); nextCstr(TB.NLZ[y]); nextCstr(TB.LZ[x]); } else if(x >= 1) nextCstr(TB.NLZ[x]); else nextChar('0'); } void nextI32(int32_t x){ if(x >= 0) nextU32(x); else{ nextChar('-'); nextU32((u32)-x); } } void nextU64(uint64_t x){ u32 y = 0; if(x >= P10L(18)){ Fil(y, x, P10L(18)); nextU32(y); Fil(y, x, P10L(9)); next_dig9(y); next_dig9(x); } else if(x >= P10L(9)){ Fil(y, x, P10L(9)); nextU32(y); next_dig9(x); } else nextU32(x); } void nextI64(int64_t x){ if(x >= 0) nextU64(x); else{ nextChar('-'); nextU64((u64)-x); } } void writeToFile(bool flush = false){ fwrite(Q, p, 1, stdout); if(flush) fflush(stdout); p = 0; } COutStream(){ Q[0] = 0; } ~COutStream(){ writeToFile(); } MyType& operator<<(unsigned int tg){ nextU32(tg); return *this; } MyType& operator<<(unsigned long tg){ nextU64(tg); return *this; } MyType& operator<<(unsigned long long tg){ nextU64(tg); return *this; } MyType& operator<<(int tg){ nextI32(tg); return *this; } MyType& operator<<(long tg){ nextI64(tg); return *this; } MyType& operator<<(long long tg){ nextI64(tg); return *this; } MyType& operator<<(const std::string& tg){ nextCstr(tg.c_str()); return *this; } MyType& operator<<(const char* tg){ nextCstr(tg); return *this; } MyType& operator<<(char tg){ nextChar(tg); return *this; } } cout; char CInStream::Q[INPUT_BUF_SIZE]; char COutStream::Q[OUTPUT_BUF_SIZE]; } // namespace nachia #line 7 "Main.cpp" using namespace std; using i64 = long long; using u64 = unsigned long long; using i32 = int; using u32 = unsigned int; #define rep(i,n) for(int i=0; i; using Fps = nachia::FormalPowerSeriesNTT; int N; vector Q; nachia::CsrArray E; Modint k0; vector inv_mod; Fps C; vector nttC; vector ans; vector bfsbuf_dist; void get_bfsbuf_dist(nachia::CentroidDecomposition::BFSUnit tree){ bfsbuf_dist[tree.I.front()] = 0; for(int i=1; i<(int)tree.I.size(); i++){ bfsbuf_dist[tree.I[i]] = bfsbuf_dist[tree.P[i]] + 1; } } Fps sigma(const Fps& B){ int n = B.size() + 2; if(n >= 10){ int Z = 1, d = 0; while(Z < n){ Z *= 2; d++; } Fps revB(Z*2); rep(i, B.size()) revB[Z-i] = B[i]; revB.ntt().mulEach(nttC[d+1]).intt(); return revB.clip(Z, n); } Fps ans(n); for(int i=0; i> N; Q.resize(N); rep(i,N) Q[i] = Modint::raw(cin.nextU32()); { nachia::Graph graph(N); rep(i,N-1){ int u,v; cin >> u >> v; u--; v--; graph.addEdge(u, v); } E = graph.getAdjacencyArray(true); } int max_ntt_size_log = 0; while((1 << max_ntt_size_log) < N + 6) max_ntt_size_log++; max_ntt_size_log++; int max_ntt_size = 1 << max_ntt_size_log; k0 = 1; for(int i=1; i<=N; i++) k0 = k0 * Modint::raw(i); k0 = k0 * k0; inv_mod.assign(max_ntt_size+1, 1); for(int i=2; i<=max_ntt_size; i++) inv_mod[i] = - inv_mod[MOD % i] * (MOD / i); C = Fps(max_ntt_size); for(int i=0; i dep_s){ nachia::CentroidDecomposition::BFSUnit bfs_nx = centroid_decomposition.bfs_layer(nx, dep_s+1); Fps sigma_nx = sigma_tree(bfs_nx); for(int p : bfs_nx.I){ int d = bfsbuf_dist[p] + 1; ans[p] += sigma_s[d] - sigma_nx[d+1]; } } ans[s] += sigma_s[0]; } rep(p,N) cout << ans[p].val() << "\n"; return 0; }