fn main() { let mut sc = Scanner::new(); let n = sc.usize(); let k = sc.usize(); let a = sc.vec::(n); def_monoid!(M, usize, std::usize::MAX, |a:&usize,b:&usize| *a.min(b)); let mut dp = SegmentTree::::new(n + 1); dp.set(0, 0); for (i, &a) in a.iter().enumerate() { dp.set(i+1, dp.fold((i+1).saturating_sub(k)..=i) + a); } let ans = a.iter().sum::() - dp.fold(n-k+1..); println!("{}", ans); } struct Scanner { s : std::collections::VecDeque } #[allow(unused)] impl Scanner { fn new() -> Self { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); Self { s : s.split_whitespace().map(|s| s.to_string()).collect() } } fn reload(&mut self) -> () { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); self.s = s.split_whitespace().map(|s| s.to_string()).collect(); } fn usize(&mut self) -> usize { self.input() } fn usize1(&mut self) -> usize { self.input::() - 1 } fn isize(&mut self) -> isize { self.input() } fn i32(&mut self) -> i32 { self.input() } fn i64(&mut self) -> i64 { self.input() } fn i128(&mut self) -> i128 { self.input() } fn u8(&mut self) -> u8 { self.input() } fn u32(&mut self) -> u32 { self.input() } fn u64(&mut self) -> u64 { self.input() } fn u128(&mut self) -> u128 { self.input() } fn edge(&mut self) -> (usize, usize) { (self.usize1(), self.usize1()) } fn edges(&mut self, m : usize) -> Vec<(usize, usize)> { let mut e = Vec::with_capacity(m); for _ in 0..m { e.push(self.edge()); } e } fn wedge(&mut self) -> (usize, usize, T) { (self.usize1(), self.usize1(), self.input()) } fn wedges(&mut self, m : usize) -> Vec<(usize, usize, T)> { let mut e = Vec::with_capacity(m); for _ in 0..m { e.push(self.wedge()); } e } fn input(&mut self) -> T where T: std::str::FromStr { if self.s.is_empty() { self.reload(); } if let Some(head) = self.s.pop_front() { head.parse::().ok().unwrap() } else { panic!() } } fn tuple(&mut self) -> (T, U) where T: std::str::FromStr, U: std::str::FromStr { (self.input(), self.input()) } fn vec(&mut self, n: usize) -> Vec where T: std::str::FromStr { if self.s.is_empty() { self.reload(); } self.s.drain(..n).map(|s| s.parse::().ok().unwrap() ).collect::>() } fn nvec(&mut self) -> Vec where T: std::str::FromStr { let n : usize = self.input(); self.vec(n) } fn chars(&mut self) -> Vec { let s : String = self.input(); s.chars().collect() } fn bytes(&mut self) -> Vec { let s : String = self.input(); s.bytes().collect() } } #[macro_export] macro_rules! def_monoid { ($m:ident, $t:ty, $id:expr, $op:expr) => { pub struct $m; impl Monoid for $m { type Type = $t; fn identity() -> Self::Type { $id } fn operator(x:&Self::Type, y:&Self::Type) -> Self::Type {$op(x, y) } }}; } pub trait Monoid { type Type: Copy + Clone + std::fmt::Debug; fn identity() -> Self::Type; fn operator(a: &Self::Type, b: &Self::Type) -> Self::Type; } struct SegmentTree { n : usize, seg: Vec, } #[allow(unused)] impl SegmentTree { pub fn new(n : usize) -> Self { SegmentTree {n, seg:vec![T::identity(); 2*n + 1]} } pub fn from(s : &[T::Type]) -> Self { let n = s.len(); let mut seg = vec![T::identity(); 2*n+1]; for (i, &si) in s.iter().enumerate() { seg[i+n] = si; } for i in (1..n).rev() { seg[i] = T::operator(&seg[2*i], &seg[2*i+1]); } SegmentTree {n,seg} } pub fn set(&mut self, i:usize, x:T::Type) { let mut index = i + self.n; self.seg[index] = x; while index > 0 { index /= 2; self.seg[index] = T::operator(&self.seg[2*index], &self.seg[2*index+1]); } } fn _fold(&self, mut l:usize, mut r:usize) -> T::Type { let mut left = T::identity(); let mut right = T::identity(); while l < r { if l%2 == 1 { left = T::operator(&self.seg[l], &left); l+=1; } if r%2 == 1 { r-=1; right = T::operator(&right, &self.seg[r]); } l/=2; r/=2; } T::operator(&left, &right) } pub fn fold>(&self, range: R) -> T::Type { let l = self.n + match range.start_bound() { std::ops::Bound::Unbounded => 0, std::ops::Bound::Included(&l) => l, _ => unreachable!() }; let r = self.n + match range.end_bound() { std::ops::Bound::Unbounded => self.n, std::ops::Bound::Included(&x) => x + 1, std::ops::Bound::Excluded(&x) => x, }; self._fold(l, r) } pub fn get(&self, index:usize) -> T::Type { self.seg[index + self.n].clone() } fn _first_leftbool>(&self, mut l:usize, r:usize, f : F) -> Option { if !f(&self.fold(l..r)) { return None; } l += self.n; loop { if f(&self.seg[l]) { if l >= self.n { return Some(l - self.n); } l *= 2; } else { if l%2 == 0 { l += 1; } else { l = l/2 + 1; } } } } pub fn first_left, F: Fn(&T::Type)->bool>(&self, range : R, f : F) -> Option { let l = match range.start_bound() { std::ops::Bound::Unbounded => 0, std::ops::Bound::Included(&l) => l, _ => unreachable!() }; let r = match range.end_bound() { std::ops::Bound::Unbounded => self.n, std::ops::Bound::Included(&x) => x + 1, std::ops::Bound::Excluded(&x) => x, }; self._first_left(l, r, f) } }