#pragma region template #pragma GCC optimize("Ofast") #include using namespace std; using ll=long long; using ld=long double; using vi=vector; using vll=vector; using pi=pair; using pll=pair; #define overload2(a,b,c,...) c #define overload3(a,b,c,d,...) d #define overload4(a,b,c,d,e,...) e #define overload5(a,b,c,d,e,f,...) f #define TYPE1(T) template #define TYPE2(T,U) template #define TYPE(...) overload2(__VA_ARGS__,TYPE2,TYPE1)(__VA_ARGS__) #define TYPES1(T) template #define TYPES2(H,T) template #define TYPES(...) overload2(__VA_ARGS__,TYPES2,TYPES1)(__VA_ARGS__) #define REP4(i,s,n,d) for(int i=(s);i<(n);i+=(d)) #define REP3(i,s,n) REP4(i,s,n,1) #define REP2(i,n) REP3(i,0,n) #define REP1(n) REP2(tomato,n) #define REP(...) overload4(__VA_ARGS__,REP4,REP3,REP2,REP1)(__VA_ARGS__) #define RREP4(i,n,s,d) for(int i=(n)-1;i>=s;i-=d) #define RREP3(i,n,s) RREP4(i,n,s,1) #define RREP2(i,n) RREP3(i,n,0) #define RREP1(n) RREP2(tomato,n) #define RREP(...) overload4(__VA_ARGS__,RREP4,RREP3,RREP2,RREP1)(__VA_ARGS__) #define FOR4(a,b,c,d,v) for(auto [a,b,c,d]:v) #define FOR3(a,b,c,v) for(auto [a,b,c]:v) #define FOR2(a,b,v) for(auto [a,b]:v) #define FOR1(a,v) for(auto a:v) #define FOR(...) overload5(__VA_ARGS__,FOR4,FOR3,FOR2,FOR1)(__VA_ARGS__) #define AFOR4(a,b,c,d,v) for(auto&[a,b,c,d]:v) #define AFOR3(a,b,c,v) for(auto&[a,b,c]:v) #define AFOR2(a,b,v) for(auto&[a,b]:v) #define AFOR1(a,v) for(auto&a:v) #define AFOR(...) overload5(__VA_ARGS__,AFOR4,AFOR3,AFOR2,AFOR1)(__VA_ARGS__) #define CFOR4(a,b,c,d,v) for(const auto&[a,b,c,d]:v) #define CFOR3(a,b,c,v) for(const auto&[a,b,c]:v) #define CFOR2(a,b,v) for(const auto&[a,b]:v) #define CFOR1(a,v) for(const auto&a:v) #define CFOR(...) overload5(__VA_ARGS__,CFOR4,CFOR3,CFOR2,CFOR1)(__VA_ARGS__) #define ALL(v) v.begin(),v.end() #define RALL(v) v.rbegin(),v.rend() #define SORT(v) sort(ALL(v)) #define RSORT(v) sort(RALL(v)) #define REVERSE(v) reverse(ALL(v)) #define UNIQUE(v) SORT(v),v.erase(unique(ALL(v)),v.end()) TYPES(T) void input(T&... a){ (cin>>...>>a); } #define DECLARE(T,...) T __VA_ARGS__;input(__VA_ARGS__); #define INT(...) DECLARE(int,__VA_ARGS__) #define STR(...) DECLARE(string,__VA_ARGS__) #define LL(...) DECLARE(long long,__VA_ARGS__) #define CHR(...) DECLARE(char,__VA_ARGS__) #define DBL(...) DECLARE(double,__VA_ARGS__) #define VI(n,v) vi v(n);cin>>v; #define VLL(n,v) vll v(n);cin>>v; TYPE(T) istream&operator>>(istream&is,vector&v){ for(auto&a:v)cin>>a; return is; } TYPE(T) ostream&operator<<(ostream&os,const vector&v){ if(&os==&cerr)os<<"["; REP(i,v.size()){ os<>(istream&is,pair&p){ cin>>p.first>>p.second; return is; } #ifdef __LOCAL #include #else #define debug(...) void(0) #endif void print(){ cout << '\n'; } TYPES(T,Ts) void print(const T& a,const Ts&... b){ cout<; TYPE(T) using pqg=priority_queue,greater>; TYPE(T) T pick(queue& que){assert(que.size()); T a=que.front();que.pop();return a;} TYPE(T) T pick(pq& que){assert(que.size()); T a=que.top();que.pop();return a;} TYPE(T) T pick(pqg& que){assert(que.size()); T a=que.top();que.pop();return a;} TYPE(T) T pick(stack& sta){assert(sta.size()); T a=sta.top();sta.pop();return a;} string YES(bool f=true){return (f?"YES":"NO");} string Yes(bool f=true){return (f?"Yes":"No");} string yes(bool f=true){return (f?"yes":"no");} constexpr int INF=1e9+7; constexpr ll LINF=ll(1e18)+7; constexpr ld EPS=1e-10; vi iota(int n){vi a(n);iota(ALL(a),0);return a;} TYPE(T) vector> query_sort(const vector&v){ vector> res(v.size()); REP(i,v.size())res[i]={v[i],i}; SORT(res); return res; } TYPE(T) T rev(T a){ REVERSE(a);return a; } TYPE(T) void fin(T a){cout<b&&(a=b,true));} TYPES(T,Ns) auto make_vector(T x,int n,Ns ...ns){ if constexpr(sizeof...(ns)==0)return vector(n,x); else return vector(n,make_vector(x,ns...)); } bool in(const ll S,const int a){return (S>>a)&1;} int popcount(const ll S){return __builtin_popcountll(S);} int digit(char c){ return (c>='0' and c<='9' ? c-'0' : -1);} #pragma endregion template #include using namespace atcoder; using mint=modint1000000007; ostream& operator<<(ostream &os,mint a){os<>(istream &is,mint &a){ long long b;is>>b;a=b; return is; } struct Edge{ int from,to; Edge()=default; Edge(int from,int to):from(from),to(to){} }; struct Graph{ int n; using edge_type=Edge; vector edges; protected: vector in_deg; bool prepared; class OutgoingEdges{ Graph* g; int l,r; public: OutgoingEdges(Graph* g,int l,int r):g(g),l(l),r(r){} edge_type* begin(){ return &(g->edges[l]); } edge_type* end(){ return &(g->edges[r]); } edge_type& operator[](int i){ return g->edges[l+i]; } int size()const{ return r-l; } }; class ConstOutgoingEdges{ const Graph* g; int l,r; public: ConstOutgoingEdges(const Graph* g,int l,int r):g(g),l(l),r(r){} const edge_type* begin()const{ return &(g->edges[l]); } const edge_type* end()const{ return &(g->edges[r]); } const edge_type& operator[](int i)const{ return g->edges[l+i]; } int size()const{ return r-l; } }; public: OutgoingEdges operator[](int v){ assert(prepared); return { this,in_deg[v],in_deg[v+1] }; } const ConstOutgoingEdges operator[](int v)const{ assert(prepared); return { this,in_deg[v],in_deg[v+1] }; } bool is_prepared()const{ return prepared; } Graph():n(0),in_deg(1,0),prepared(false){} Graph(int n):n(n),in_deg(n+1,0),prepared(false){} Graph(int n,int m,bool directed=false,int indexed=1): n(n),in_deg(n+1,0),prepared(false){ scan(m,directed,indexed); } void resize(int n){n=n;} void add_arc(int from,int to){ assert(!prepared); assert(0<=from and from>u>>v;u-=indexed;v-=indexed; if(directed)add_arc(u,v); else add_edge(u,v); } build(); } void build(){ assert(!prepared);prepared=true; for(int v=0;v new_edges(in_deg.back()); auto counter=in_deg; for(auto&&e:edges)new_edges[ counter[e.from]++ ]=e; edges=new_edges; } void graph_debug()const{ #ifndef __LOCAL return; #endif assert(prepared); for(int from=0;from DFS,BFS,depth; void scan_root(int indexed=1){ for(int i=1;i>p; add_edge(p-indexed,i); } build(); } void scan(int indexed=1){ Graph::scan(n-1,false,indexed); build(); } edge_type& parent(int v){ assert(~root and root!=v); return (*this)[v][0]; } OutgoingEdges son(int v){ assert(~root); if(v==root)return {this,in_deg[v],in_deg[v+1]}; return {this,in_deg[v]+1,in_deg[v+1]}; } private: void dfs(int v,int pre=-1){ for(auto&e:(*this)[v]){ if(e.to==pre)swap((*this)[v][0],e); else{ depth[e.to]=depth[v]+1; dfs(e.to,v); } } DFS.push_back(v); } public: void build(int r=0){ if(!is_prepared())Graph::build(); if(~root){ assert(r==root); return; } root=r; depth=vector(n,0); DFS.reserve(n);BFS.reserve(n); dfs(root); queue que; que.push(root); while(que.size()){ int p=que.front();que.pop(); BFS.push_back(p); for(const auto&e:son(p))que.push(e.to); } } }; class EdgeVertex{ int n; vector> edges; public: EdgeVertex(int n):n(n){ edges.reserve(n-1); } int add_edge(int u,int v){ assert(0<=u and u class SegmentTree{ using X=typename Monoid::value_type; vector dat; int n,log,size; void update(int i){ dat[i]=Monoid::op(dat[2*i],dat[2*i+1]); } public: SegmentTree():SegmentTree(0){} SegmentTree(int n):SegmentTree(vector(n, Monoid::unit())){} SegmentTree(vector v):n(v.size()){ for(log=1;(1<=1;--i) update(i); } X operator[](int i)const{ return dat[size+i]; } void set(int i,const X&x){ assert(0<=i and i>=1)update(i); } void multiply(int i,const X&x){ set(i,Monoid::op(dat[i+size],x));} X prod(int L,int R)const{ assert(0<=L and L<=R and R<=n); X vl=Monoid::unit(),vr=Monoid::unit(); L+=size, R+=size; while(L>=1,R>>=1; } return Monoid::op(vl,vr); } X prod_all()const{ return dat[1]; } template int max_right(F& check,int L){ assert(0<=L && L<=n && check(Monoid::unit())); if(L == n) return n; L += size; X sm = Monoid::unit(); do { while (L % 2 == 0) L >>= 1; if (!check(Monoid::op(sm, dat[L]))) { while (L < size) { L <<= 1; if (check(Monoid::op(sm, dat[L]))) Monoid::Rchop(sm, dat[L++]); } return L - size; } Monoid::Rchop(sm, dat[L++]); } while ((L & -L) != L); return n; } template int min_left(F& check, int R) { assert(0 <= R && R <= n && check(Monoid::unit())); if (R == 0) return 0; R += size; X sm = Monoid::unit(); do { --R; while (R > 1 && (R % 2)) R >>= 1; if (!check(Monoid::op(dat[R], sm))) { while (R < size) { ( R <<= 1 )++; if (check(Monoid::op(dat[R], sm))) Monoid::Lchop(dat[R--], sm); } return R + 1 - size; } Monoid::Lchop(dat[R], sm); } while ((R & -R) != R); return 0; } X Xor_prod(int l, int r, int xor_val) { assert(Monoid::commute); X x = Monoid::unit(); for (int k = 0; k < log + 1; ++k) { if (l >= r) break; if (l & 1) { Monoid::Rchop(x, dat[(size >> k) + ((l++) ^ xor_val)]); } if (r & 1) { Monoid::Rchop(x, dat[(size >> k) + ((--r) ^ xor_val)]); } l /= 2, r /= 2, xor_val /= 2; } return x; } ostream& operator<<(ostream&os)const{ os<<"("; for(int L=1;L<=size;L<<=1){ os<<"["; for(int j=L;j<(L<<1);j++){ os< struct AlgebraReverse:Algebra{ using X=typename Algebra::value_type; static constexpr X op(const X& x, const X& y){ return Algebra::op(y,x); } static constexpr void Rchop(X&x,const X&y){ Algebra::Lchop(y,x); } static constexpr void Lchop(const X&x,X&y){ Algebra::Rchop(y,x); } }; template struct HLD{ int n; TREE T; vector sz,head,id,id2; bool prepared; HLD(TREE T_):T(T_),n(T_.n),sz(n),head(n),id(n),id2(n),prepared(false){} private: void dfs_sz(int v){ sz[v]=1; for(auto&e:T.son(v)){ sz[v]+=sz[e.to]; if(sz[e.to]>sz[T.son(v)[0].to])swap(e,T.son(v)[0]); } } void dfs_hld(int v,int& k){ id[v]=k++; for(int i=0;i build(int r=0){ assert(!prepared);prepared=true; if(~T.root)assert(T.root==r); else T.build(r); head[r]=r; dfs_sz(r); int k=0; dfs_hld(r,k); return id; } int lca(int u,int v){ assert(prepared); while(head[u]!=head[v]){ if(T.depth[head[u]]>T.depth[head[v]])u=T.parent(head[u]).to; else v=T.parent(head[v]).to; } return (T.depth[u]>; pair path(int u,int v){ assert(prepared); path_t path_u,path_v; while(u!=v){ if(head[u]==head[v]){ if(T.depth[u] subtree(int v){ assert(prepared); return {id[v],id2[v]}; } }; template struct TreeMonoid{ using X=typename Monoid::value_type; using Monoid_r=AlgebraReverse; int n; TREE T; HLD hld; vector hld_id,euler_in,euler_out; SegmentTree seg; SegmentTree seg_r; TreeMonoid(TREE T,int r=0):T(T),hld(T),n(T.n),seg(n),seg_r(n){ T.build(r); hld_id=hld.build(r); } TreeMonoid(TREE T,vector a,int r=0):T(T),hld(T),n(T.n){ T.build(r); hld_id=hld.build(r); vector hld_a(n); for(int v=0;v(hld_a); if(!Monoid::commute)seg_r=SegmentTree(hld_a); } void set(int v,X x){ seg.set(hld_id[v],x); if(!Monoid::commute)seg_r.set(hld_id[v],x); } void multiply(int v,X x){ seg.multiply(hld_id[v],x); if(!Monoid::commute)seg_r.multiply(hld_id[v],x); } X get(int v){ return seg.get(hld_id[v]); } X path_prod(int u,int v){ auto [path_u,path_v]=hld.path(u,v); X prod_u=Monoid::unit(),prod_v=Monoid::unit(); for(const auto&[l,r]:path_u){ X val=(Monoid::commute?seg.prod(r,l+1):seg_r.prod(r,l+1)); Monoid::Rchop(prod_u,val); } for(const auto&[l,r]:path_v){ X val=seg.prod(r,l+1); Monoid::Lchop(val,prod_v); } return Monoid::op(prod_u,prod_v); } X path_root(int v){ return path(T.root,v); } X subtree_prod(int v){ assert(Monoid::commute); auto [l,r]=hld.subtree(v); return seg.prod(l,r); } }; #define REP_(i,n) for(int i=0;i<(n);i++) #define REP2_(i,s,n) for(int i=(s);i<(n);i++) template struct SquareMatrix{ using value_type=K; using vec=array; using mat=array; mat M; SquareMatrix(K a=0){ for(vec& v:M)v.fill(0); if(a!=0)REP_(i,N)M[i][i]=a; } SquareMatrix(const mat&A):M(A){} SquareMatrix(const vector>&v){ assert(v.size()==N and v[0].size()==N); REP_(i,N)REP_(j,N)M[i][j]=v[i][j]; } vec& operator[](size_t k){return M[k];} const vec& operator[](size_t k)const{return M[k];} SquareMatrix& operator+=(const SquareMatrix &A){ REP_(i,N)REP_(j,N)M[i][j]+=A[i][j]; return *this; } SquareMatrix& operator-=(const SquareMatrix &A){ REP_(i,N)REP_(j,N)M[i][j]-=A[i][j]; return *this; } SquareMatrix operator+(const SquareMatrix &A)const{ return SquareMatrix(M)+=A; } SquareMatrix operator-(const SquareMatrix &A)const{ return SquareMatrix(M)-=A; } friend SquareMatrix operator*(const SquareMatrix &A,const SquareMatrix &B){ SquareMatrix res; REP_(i,N)REP_(k,N)REP_(j,N)res[i][j]+=A[i][k]*B[k][j]; return res; } SquareMatrix& operator*=(const SquareMatrix &A){ M=((*this)*A).M; return *this; } SquareMatrix& operator/=(const SquareMatrix&A){ return (*this) *= A.inv(); } SquareMatrix operator/(const SquareMatrix&A)const{ return SquareMatrix(M) /= A; } bool operator==(const SquareMatrix &A){ REP_(i,N)REP_(j,N)if(M[i][j]!=A[i][j])return false; return true; } bool operator!=(const SquareMatrix &A){ return !((*this)==A); } static SquareMatrix I(){ return SquareMatrix(1); } SquareMatrix pow(long long n)const{ assert(n>=0); SquareMatrix A(M),res(1); while(n){ if(n&1)res*=A; A*=A; n>>=1; } return res; } pair GaussJordan(){ int rnk=0,cnt=0; REP_(k,N){ if(M[rnk][k]==0) REP2_(i,rnk+1,N) if(M[i][k]!=0){ swap(M[i],M[rnk]); cnt^=1; break; } if(M[rnk][k]==0)continue; REP_(i,N)if(i!=rnk){ K x=M[i][k]/M[rnk][k]; REP_(j,N)M[i][j]-=M[rnk][j]*x; } if(++rnk==N)break; } return {rnk,cnt}; } K det()const{ SquareMatrix A(M); const auto&[rnk,cnt]=A.GaussJordan(); if(rnk!=N)return 0; K res=1; REP_(i,N)res*=A[i][i]; return (cnt?-res:res); } SquareMatrix inv()const{ SquareMatrix A(M),B(1); REP_(k,N){ if(A[k][k]==0) REP2_(i,k+1,N) if(A[i][k]!=0){ swap(A[i],A[k]); swap(B[i],B[k]); } assert(A[k][k]!=0); REP_(i,N)if(i!=k){ K x=A[i][k]/A[k][k]; REP_(j,N){ A[i][j]-=A[k][j]*x; B[i][j]-=B[k][j]*x; } } K x=A[k][k]; REP_(j,N){ A[k][j]/=x; B[k][j]/=x; } } return B; } friend ostream& operator<<(ostream&os,const SquareMatrix &M){ os<>(istream&is,SquareMatrix &M){ REP_(i,N)REP_(j,N)is>>M.M[i][j]; return is; } }; #undef REP_ #undef REP2_ template struct GroupMultiply{ using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x * y; } static constexpr void Rchop(X&x, const X&y){ x*=y; } static constexpr void Lchop(const X&x, X&y){ if constexpr(COMMUTE){ y*=x; } else{ y=x*y;} } static constexpr X inverse(const X &x) noexcept { return X(1)/x; } static constexpr X power(const X &x, long long n) noexcept { return x.pow(n); } static constexpr X unit() { return X(1); } static constexpr bool commute = COMMUTE; }; using MAT=SquareMatrix; int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); INT(n); EdgeVertex EV(n); REP(n-1){ INT(u,v); EV.add_edge(u,v); } Tree T=EV.build(); TreeMonoid> TM(T); INT(q); REP(q){ CHR(c); if(c=='x'){ INT(idx); MAT M; REP(i,2)REP(j,2)cin>>M[i][j]; TM.set(n+idx,M); } else{ INT(l,r); MAT M=TM.path_prod(l,r); REP(i,2)REP(j,2) cout<