#pragma GCC optimization ("O3") #include using namespace std; using ll = long long; using vec = vector; using mat = vector; using pll = pair; #define INF (1LL<<61) //#define MOD 1000000007LL #define MOD 998244353LL #define EPS (1e-10) #define PR(x) cout << (x) << endl #define PS(x) cout << (x) << " " #define REP(i,m,n) for(ll (i)=(m),(i_len)=(n);(i)<(i_len);++(i)) #define FORE(i,v) for(auto (i):v) #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((ll)(x).size()) #define REV(x) reverse(ALL((x))) #define ASC(x) sort(ALL((x))) #define DESC(x) {ASC((x)); REV((x));} #define BIT(s,i) (((s)>>(i))&1) #define pb push_back #define fi first #define se second template inline int chmin(T& a, T b) {if(a>b) {a=b; return 1;} return 0;} template inline int chmax(T& a, T b) {if(a=MOD) x-=MOD; return *this;} mint& operator-=(const mint& a) {if((x+=MOD-a.x)>=MOD) x-=MOD; return *this;} mint& operator*=(const mint& a) {(x*=a.x)%=MOD; return *this;} mint operator+(const mint& a) const {mint b(*this); return b+=a;} mint operator-(const mint& a) const {mint b(*this); return b-=a;} mint operator*(const mint& a) const {mint b(*this); return b*=a;} mint pow(ll t) const {if(!t) return 1; mint a=pow(t>>1); return (t&1?*this*a:a)*a;} mint inv() const {return pow(MOD-2);} mint& operator/=(const mint& a) {return *this*=a.inv();} mint operator/(const mint& a) const {mint b(*this); return b/=a;} }; istream &operator>>(istream& is, mint& a) {ll t; is>>t; a=t; return is;} ostream &operator<<(ostream& os, const mint& a) {return os<>1, m); return ((b&1)?a*t%m:t)*t%m; } ll root(ll n) { vec P = factorization(n-1); while(1) { ll r = n==2?1:rand()%(n-2)+2; bool f = true; FORE(p,P) { if(modpow(r, (n-1)/p, n) == 1) { f = false; break; } } if(f) return r; } return -1; } void solve() { ll V, X; cin >> V >> X; ll P = V*X+1; ll R = root(P); vec A(X); REP(i,0,X) A[i] = modpow(R, i*V, P); ASC(A); FORE(a,A) PS(a); PR(""); } int main() { ll T; cin >> T; REP(i,0,T) solve(); return 0; } /* */