// ---------- begin modint ---------- use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; } pub struct ConstantModulo; impl Modulo for ConstantModulo<{ M }> { fn modulo() -> u32 { M } } pub struct ModInt(u32, PhantomData); impl Clone for ModInt { fn clone(&self) -> Self { Self::new_unchecked(self.0) } } impl Copy for ModInt {} impl Add for ModInt { type Output = ModInt; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= T::modulo() { v -= T::modulo(); } Self::new_unchecked(v) } } impl AddAssign for ModInt { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl Sub for ModInt { type Output = ModInt; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += T::modulo(); } Self::new_unchecked(v) } } impl SubAssign for ModInt { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl Mul for ModInt { type Output = ModInt; fn mul(self, rhs: Self) -> Self::Output { let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64; Self::new_unchecked(v as u32) } } impl MulAssign for ModInt { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl Neg for ModInt { type Output = ModInt; fn neg(self) -> Self::Output { if self.is_zero() { Self::zero() } else { Self::new_unchecked(T::modulo() - self.0) } } } impl std::fmt::Display for ModInt { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl std::fmt::Debug for ModInt { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl Default for ModInt { fn default() -> Self { Self::zero() } } impl std::str::FromStr for ModInt { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result { let val = s.parse::()?; Ok(ModInt::new(val)) } } impl From for ModInt { fn from(val: usize) -> ModInt { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl From for ModInt { fn from(val: u64) -> ModInt { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl From for ModInt { fn from(val: i64) -> ModInt { let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32; if v >= T::modulo() { v -= T::modulo(); } ModInt::new_unchecked(v) } } impl ModInt { pub fn new_unchecked(n: u32) -> Self { ModInt(n, PhantomData) } pub fn zero() -> Self { ModInt::new_unchecked(0) } pub fn one() -> Self { ModInt::new_unchecked(1) } pub fn is_zero(&self) -> bool { self.0 == 0 } } impl ModInt { pub fn new(d: u32) -> Self { ModInt::new_unchecked(d % T::modulo()) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(!self.is_zero()); self.pow(T::modulo() as u64 - 2) } pub fn fact(n: usize) -> Self { (1..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn perm(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn binom(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } let k = k.min(n - k); let mut nu = Self::one(); let mut de = Self::one(); for i in 0..k { nu *= Self::from(n - i); de *= Self::from(i + 1); } nu * de.inv() } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc { fact: Vec>, ifact: Vec>, inv: Vec>, } impl Precalc { pub fn new(n: usize) -> Precalc { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..=n { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { fact, ifact, inv } } pub fn inv(&self, n: usize) -> ModInt { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- type M = ModInt>; // ---------- begin Aho-Corasick ---------- const F: usize = 62; struct ACTrieNode { fail: usize, next: [usize; F], } impl Default for ACTrieNode { fn default() -> Self { let fail = 0; let next = [0; F]; ACTrieNode { fail, next, } } } pub struct AhoCorasick { node: Vec, } impl AhoCorasick { pub fn new() -> Self { AhoCorasick { node: vec![ACTrieNode::default()], } } pub fn insert(&mut self, s: &[usize]) -> usize { let node = &mut self.node; let mut v = 0; for &k in s { if node[v].next[k] == 0 { node[v].next[k] = node.len(); node.push(ACTrieNode::default()); } v = node[v].next[k]; } v } pub fn build(&mut self) { let mut q = std::collections::VecDeque::new(); let node = &mut self.node; for i in 0..F { if node[0].next[i] != 0 { q.push_back(node[0].next[i]); } } while let Some(v) = q.pop_front() { for i in 0..F { let u = node[v].next[i]; if u == 0 { continue; } let mut fail = node[v].fail; while fail > 0 && node[fail].next[i] == 0 { fail = node[fail].fail; } let f = node[fail].next[i]; node[u].fail = f; q.push_back(u); } } } pub fn next(&self, v: usize, k: usize) -> usize { assert!(v < self.node.len() && k < F); self.node[v].next[k] } pub fn trans(&self, mut v: usize, k: usize) -> usize { assert!(v < self.node.len() && k < F); let node = &self.node; while v > 0 && node[v].next[k] == 0 { v = node[v].fail; } node[v].next[k] } pub fn fail(&self, v: usize) -> usize { assert!(v < self.node.len()); self.node[v].fail } pub fn size(&self) -> usize { self.node.len() } pub fn bfs(&self, mut f: F) { let mut q = std::collections::VecDeque::new(); q.push_back(0); while let Some(v) = q.pop_front() { f(v, &self.node[v].next, self.node[v].fail); for &u in self.node[v].next.iter() { if u != 0 { q.push_back(u); } } } } } // ---------- end Aho-Corasick ---------- // ---------- begin scannner ---------- #[allow(dead_code)] mod scanner { use std::str::FromStr; pub struct Scanner<'a> { it: std::str::SplitWhitespace<'a>, } impl<'a> Scanner<'a> { pub fn new(s: &'a String) -> Scanner<'a> { Scanner { it: s.split_whitespace(), } } pub fn next(&mut self) -> T { self.it.next().unwrap().parse::().ok().unwrap() } pub fn next_bytes(&mut self) -> Vec { self.it.next().unwrap().bytes().collect() } pub fn next_chars(&mut self) -> Vec { self.it.next().unwrap().chars().collect() } pub fn next_vec(&mut self, len: usize) -> Vec { (0..len).map(|_| self.next()).collect() } } } // ---------- end scannner ---------- use std::io::Write; use std::collections::*; type Map = BTreeMap; type Set = BTreeSet; type Deque = VecDeque; fn main() { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); let mut sc = scanner::Scanner::new(&s); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); run(&mut sc, &mut out); } fn run(sc: &mut scanner::Scanner, out: &mut std::io::BufWriter) { let n: usize = sc.next(); let index = |x: u8| -> usize { let c = if b'a' <= x && x <= b'z' { x - b'a' } else if b'A' <= x && x <= b'Z' { x - b'A' + 26 } else { x - b'0' + 52 }; c as usize }; let t = sc.next_bytes(); let t = t.into_iter().map(index).collect::>(); let mut aho = AhoCorasick::new(); let pos = aho.insert(&t); aho.build(); let mut hit = vec![false; pos + 1]; hit[pos] = true; let mut trans = vec![]; for _ in 0..n { let s = sc.next_bytes(); if s[0] != b'~' { let s = s.into_iter().map(index).collect::>(); let mut memo = (0..hit.len()).map(|x| (x, M::zero())).collect::>(); for memo in memo.iter_mut() { for c in s.iter() { memo.0 = aho.trans(memo.0, *c); if memo.0 == pos { memo.1 += M::one(); } } } trans.push(memo); } else { let j = sc.next::() - 1; let k = sc.next::() - 1; let mut a = trans[j].clone(); for a in a.iter_mut() { a.1 += trans[k][a.0].1; a.0 = trans[k][a.0].0; } trans.push(a); } } writeln!(out, "{}", trans[n - 1][0].1).ok(); }