#pragma GCC optimization ("O3") #include using namespace std; using ll = long long; using vec = vector; using mat = vector; using pll = pair; #define INF (1LL<<61) #define MOD 1000000007LL //#define MOD 998244353LL #define EPS (1e-10) #define PR(x) cout << (x) << endl #define PS(x) cout << (x) << " " #define REP(i,m,n) for(ll (i)=(m),(i_len)=(n);(i)<(i_len);++(i)) #define FORE(i,v) for(auto (i):v) #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((ll)(x).size()) #define REV(x) reverse(ALL((x))) #define ASC(x) sort(ALL((x))) #define DESC(x) {ASC((x)); REV((x));} #define BIT(s,i) (((s)>>(i))&1) #define pb push_back #define fi first #define se second template inline int chmin(T& a, T b) {if(a>b) {a=b; return 1;} return 0;} template inline int chmax(T& a, T b) {if(a=MOD) x-=MOD; return *this;} mint& operator-=(const mint& a) {if((x+=MOD-a.x)>=MOD) x-=MOD; return *this;} mint& operator*=(const mint& a) {(x*=a.x)%=MOD; return *this;} mint operator+(const mint& a) const {mint b(*this); return b+=a;} mint operator-(const mint& a) const {mint b(*this); return b-=a;} mint operator*(const mint& a) const {mint b(*this); return b*=a;} mint pow(ll t) const {if(!t) return 1; mint a=pow(t>>1); return (t&1?*this*a:a)*a;} mint inv() const {return pow(MOD-2);} mint& operator/=(const mint& a) {return *this*=a.inv();} mint operator/(const mint& a) const {mint b(*this); return b/=a;} }; istream &operator>>(istream& is, mint& a) {ll t; is>>t; a=t; return is;} ostream &operator<<(ostream& os, const mint& a) {return os<> N >> M; vector F(N*2+1, mint(1)), Finv(N*2+1, mint(1)); REP(i,2,N*2+1) { F[i] = mint(i)*F[i-1]; Finv[i] = F[i].inv(); } auto binom = [&](ll n, ll k) -> mint { if(n < 0 || k < 0 || n < k) return mint(0); return F[n]*Finv[k]*Finv[n-k]; }; mint ans = binom(N*2, N)*mint(N*2); REP(i,0,M) { ll t, x, y; cin >> t >> x >> y; if(t == 1) ans -= binom(x+y, x)*binom(N-x-1+N-y, N-x-1); else ans -= binom(x+y, x)*binom(N-x+N-y-1, N-y-1); } PR(ans.x); return 0; } /* */