import sys,random,bisect from collections import deque,defaultdict,Counter from heapq import heapify,heappop,heappush from itertools import cycle, permutations from math import log,gcd input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def cross3(a, b, c): return (b[0]-a[0])*(c[1]-a[1]) - (b[1]-a[1])*(c[0]-a[0]) # ps = [(x, y), ...]: ソートされた座標list def convex_hull(ps): qs = [] N = len(ps) for p in ps: # 一直線上で高々2点にする場合は ">=" にする while len(qs) > 1 and cross3(qs[-1], qs[-2], p) > 0: qs.pop() qs.append(p) t = len(qs) for i in range(N-2, -1, -1): p = ps[i] while len(qs) > t and cross3(qs[-1], qs[-2], p) > 0: qs.pop() qs.append(p) return qs # O(N) def inside_convex_polygon0(p0, qs): L = len(qs) D = [cross3(qs[i-1], p0, qs[i]) for i in range(L)] return all(e >= 0 for e in D) or all(e <= 0 for e in D) # O(log N) def inside_convex_polygon(p0, qs): L = len(qs) left = 1; right = L q0 = qs[0] while left+1 < right: mid = (left + right) >> 1 if cross3(q0, p0, qs[mid]) <= 0: left = mid else: right = mid if left == L-1: left -= 1 qi = qs[left]; qj = qs[left+1] v0 = cross3(q0, qi, qj) v1 = cross3(q0, p0, qj) v2 = cross3(q0, qi, p0) if v0 < 0: v1 = -v1; v2 = -v2 return 0 <= v1 and 0 <= v2 and v1 + v2 <= v0 def find_zero(x0, x1, f): v0 = f(x0) if v0 == 0: return x0+1 left = x0; right = x1+1 while left+1 < right: mid = (left + right) >> 1 if v0 * f(mid) >= 0: left = mid else: right = mid return right def binary_search(f, L): left = 0; right = L while left+1 < right: mid = (left + right) >> 1 if f(mid) < 0: left = mid else: right = mid return right def line_polygon_intersection(p0, p1, qs): x0, y0 = p0; x1, y1 = p1 dx = x1 - x0; dy = y1 - y0 h = lambda p: (p[0] - x0)*dy - (p[1] - y0)*dx L = len(qs) i0 = i1 = -1 v0 = h(qs[0]) v1 = h(qs[L-1]) if v0 == v1: v2 = h(qs[1]) # assert v0 != v2 if v0 < v2: i0 = L-1 else: i1 = L-1 else: v2 = h(qs[1]) if v1 > v0 <= v2: i0 = 0 elif v1 < v0 >= v2: i1 = 0 else: g = lambda x: min((v1 - v0)*x/(L-1) + v0, h(qs[x])) i0 = binary_search(lambda x: g(x+1) - g(x), L-1) if i1 == -1: B = i0 - L k = binary_search(lambda x: h(qs[B+x]) - h(qs[B+x+1]), L) i1 = (i0 + k) % L else: B = i1 - L k = binary_search(lambda x: h(qs[B+x+1]) - h(qs[B+x]), L) i0 = (i1 + k) % L if h(qs[i0]) * h(qs[i1]) > 0: # a line and a polygon are disjoint return [] # a vertex to the left side of a line: i0 # a vertex to the right side of a line: i1 f = lambda i: h(qs[i-L]) k0 = find_zero(i1, i0 if i1 < i0 else i0+L, f) % L k1 = find_zero(i0, i1 if i0 < i1 else i1+L, f) % L # vertices to the left side of a line: k0, k0+1, ..., k1-2, k1-1 # vertices to the right side of a line: k1, k1+1, ..., k0-2, k0-1 if k0 == k1: return [k0] return [k0, k1] def solve_3(N,K,star): for p in range(2): for x,y in star[p]: S = set() for xx,yy in star[p^1]: xx,yy = xx-x,yy-y g = gcd(xx,yy) xx,yy = xx//g,yy//g if (-xx,-yy) in S: return "Yes" S.add((xx,yy)) return "No" def solve_4(N,K,star): star[0].sort() star[1].sort() ch = [convex_hull(star[p]) for p in range(2)] for p in range(2): for i in range(len(ch[p])): x,y = ch[p][i] if inside_convex_polygon((x,y),ch[p^1]): return "Yes" xx,yy = ch[p][i+1] if line_polygon_intersection((x,y),(xx,yy),ch[p^1]): return "Yes" return "No" N,K = mi() star = [[] for p in range(2)] for _ in range(N): x,y,c = mi() star[c-1].append((x,y)) if K == 3: print(solve_3(N,K,star)) else: print(solve_4(N,K,star))