#line 1 "Main.cpp" #include #include #include #include #include #include #line 2 "nachia\\math\\floor-of-kth-root.hpp" #include namespace nachia{ namespace internal{ // mod 2^64 constexpr unsigned long long PowerOfULongLong(unsigned long long a, unsigned long long i){ unsigned long long res = 1; while(i){ if(i&1){ res *= a; } i /= 2; a *= a; } return res; } } unsigned long long FloorOfKthRoot(unsigned long long real, unsigned long long k){ using u64 = unsigned long long; assert(k != 0); if(real <= 1) return real; if(k >= 64) return 1; if(k == 1) return real; struct Precalc{ // a^i <= x static constexpr bool lesseq(u64 a, int i, u64 x) { if (a == 0) return true; for(int j=0; j= 1; } unsigned long long BORDER[64]; constexpr Precalc() : BORDER() { for (int idx = 2; idx <= 63; idx++) { u64 l = 0, r = 1ull << 33; while (l + 1 < r) { u64 m = (l + r) / 2; if (lesseq(m, idx, ~0ull)) l = m; else r = m; } BORDER[idx] = r; } }; }; constexpr Precalc precalc; u64 l = 0, r = precalc.BORDER[k]; while (l + 1 < r) { u64 m = (l + r) / 2; if(internal::PowerOfULongLong(m, k) <= real) l = m; else r = m; } return l; } unsigned long long CeilOfKthRoot(unsigned long long real, unsigned long long k){ if(real <= 1) return real; if(k >= 64) return 2; if(k == 1) return real; unsigned long long x = FloorOfKthRoot(real, k); if(internal::PowerOfULongLong(x, k) != real) x++; return x; } } // namespace nachia #line 8 "Main.cpp" using namespace std; using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; #define rep(i,n) for(int i=0; i<(int)(n); i++) const i64 INF = 1001001001001001001; using Modint = atcoder::static_modint<998244353>; int main(){ int N; cin >> N; vector X(N), Y(N), T(N); rep(i,N) cin >> X[i] >> Y[i] >> T[i]; vector Q(N, INF); vector vis(N); vector bfs = {0}; auto dist = [&](int a, int b) -> i64 { if(T[a] == T[b]) return (X[a]-X[b])*(X[a]-X[b])+(Y[a]-Y[b])*(Y[a]-Y[b]); i64 asq = X[a]*X[a]+Y[a]*Y[a]; i64 bsq = X[b]*X[b]+Y[b]*Y[b]; return asq + bsq - nachia::FloorOfKthRoot(4 * asq * bsq, 2); }; i64 ans = 0; Q[0] = 0; rep(i,N){ int s = bfs[i]; ans = max(ans, Q[s]); vis[s] = 1; if(s == N-1) break; rep(j,N) if(vis[j] == 0) Q[j] = min(Q[j], dist(s,j)); int nx = -1; rep(j,N) if(vis[j] == 0) if(nx == -1 || Q[nx] > Q[j]) nx = j; bfs.push_back(nx); } cout << ans << endl; return 0; } struct ios_do_not_sync{ ios_do_not_sync(){ ios::sync_with_stdio(false); cin.tie(nullptr); } } ios_do_not_sync_instance;