#pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; constexpr ll mod = 998244353; //constexpr ll mod = 1000000007; const ll INF = mod * mod; typedef pairP; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair LP; template void chmin(T& a, T b) { a = min(a, b); } template void chmax(T& a, T b) { a = max(a, b); } template void cinarray(vector& v) { rep(i, v.size())cin >> v[i]; } template void coutarray(vector& v) { rep(i, v.size()) { if (i > 0)cout << " "; cout << v[i]; } cout << "\n"; } ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; //if (x == 0)return 0; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } //mod should be <2^31 struct modint { int n; modint() :n(0) { ; } modint(ll m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } n = m; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } bool operator<(modint a, modint b) { return a.n < b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 20; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } using ld = long double; //typedef long double ld; typedef pair LDP; const ld eps = 1e-10; const ld pi = acosl(-1.0); template void addv(vector& v, int loc, T val) { if (loc >= v.size())v.resize(loc + 1, 0); v[loc] += val; } /*const int mn = 2000005; bool isp[mn]; vector ps; void init() { fill(isp + 2, isp + mn, true); for (int i = 2; i < mn; i++) { if (!isp[i])continue; ps.push_back(i); for (int j = 2 * i; j < mn; j += i) { isp[j] = false; } } }*/ //[,val) template auto prev_itr(set& st, T val) { auto res = st.lower_bound(val); if (res == st.begin())return st.end(); res--; return res; } //[val,) template auto next_itr(set& st, T val) { auto res = st.lower_bound(val); return res; } using mP = pair; mP operator+(mP a, mP b) { return { a.first + b.first,a.second + b.second }; } mP operator+=(mP& a, mP b) { a = a + b; return a; } mP operator-(mP a, mP b) { return { a.first - b.first,a.second - b.second }; } mP operator-=(mP& a, mP b) { a = a - b; return a; } LP operator+(LP a, LP b) { return { a.first + b.first,a.second + b.second }; } LP operator+=(LP& a, LP b) { a = a + b; return a; } LP operator-(LP a, LP b) { return { a.first - b.first,a.second - b.second }; } LP operator-=(LP& a, LP b) { a = a - b; return a; } mt19937 mt(time(0)); const string drul = "DRUL"; string senw = "SENW"; //DRUL,or SENW int dx[4] = { 1,0,-1,0 }; int dy[4] = { 0,1,0,-1 }; //----------------------------------------- typedef complex Point; ld dot(Point a, Point b) { return real(conj(a) * b); } ld cross(Point a, Point b) { return imag(conj(a) * b); } namespace std { bool operator<(const Point& lhs, const Point& rhs) { return lhs.real() == rhs.real() ? lhs.imag() < rhs.imag() : lhs.real() < rhs.real(); } } struct Line { Point a, b; }; struct Circle { Point p; ld r; }; int ccw(Point a, Point b, Point c) { b -= a; c -= a; if (cross(b, c) > eps)return 1;//counter clockwise if (cross(b, c) < -eps)return -1;//clock wise if (dot(b, c) < 0)return 2;//c--a--b on line if (norm(b) < norm(c))return -2;//a--b--c on line return 0; //a--c--b on line } bool eq(ld a, ld b) { return abs(a - b) < eps; } //2直線の交差判定 bool isis_ll(Line l, Line m) { return !eq(cross(l.b - l.a, m.b - m.a), 0); } //直線と線分の交差判定 bool isis_ls(Line l, Line s) { return (cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps); } //点が直線上に存在するか bool isis_lp(Line l, Point p) { return (abs(cross(l.b - p, l.a - p)) < eps); } //点が線分上に存在するか bool isis_sp(Line s, Point p) { //誤差がisis_lpに比べて大きいので、できるだけisis_lpを使う return (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps); } //線分と線分の交差判定 //bool isis_ss(Line s, Line t) { // return(cross(s.b - s.a, t.a - s.a)*cross(s.b - s.a, t.b - s.a) < -eps && cross(t.b - t.a, s.a - t.a)*cross(t.b - t.a, s.b - t.a) < -eps); //} //線分と線分の交差判定2 //本当にそれは線分ですか?(check {(0,0),(2,0)},{(1,0),(1,0)}) bool isis_ss(Line s, Line t) { return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0; } //点から直線への垂線の足 Point proj(Line l, Point p) { ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b); return l.a + t * (l.a - l.b); } //直線と直線の交点 //平行な2直線に対しては使うな!!!! Point is_ll(Line s, Line t) { Point sv = s.b - s.a; Point tv = t.b - t.a; return s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv); } //直線と点の距離 ld dist_lp(Line l, Point p) { return abs(p - proj(l, p)); } //直線と直線の距離 ld dist_ll(Line l, Line m) { return isis_ll(l, m) ? 0 : dist_lp(l, m.a); } //線分と直線の距離 ld dist_ls(Line l, Line s) { return isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b)); } //線分と点の距離 ld dist_sp(Line s, Point p) { Point r = proj(s, p); return isis_sp(s, r) ? abs(p - r) : min(abs(p - s.a), abs(p - s.b)); } //線分と線分の距離 ld dist_ss(Line s, Line t) { if (isis_ss(s, t))return 0; return min({ dist_sp(s,t.a),dist_sp(s,t.b),dist_sp(t,s.a),dist_sp(t,s.b) }); } //線分と線分の交点、平行な場合は端点両方 vector is_ss(Line s1, Line s2) { if (!isis_ss(s1, s2))return {}; vector res; if (abs(cross(s1.b - s1.a, s2.b - s2.a)) < eps) { if (isis_sp(s1, s2.a)) res.push_back(s2.a); if (isis_sp(s1, s2.b)) res.push_back(s2.b); if (isis_sp(s2, s1.a)) res.push_back(s1.a); if (isis_sp(s2, s1.b)) res.push_back(s1.b); } else { res.push_back(is_ll(s1, s2)); } return res; } //2点の垂直二等分線 Line mid_line(Point a, Point b) { ld mx = (real(a) + real(b)) / 2.0, my = (imag(a) + imag(b)) / 2.0; ld dx = real(b) - real(a), dy = imag(b) - imag(a); swap(dx, dy); dx = -dx; Point le = { mx - dx,my - dy }, ri = { mx + dx,my + dy }; //a,le,ri is counter clockwise return { le,ri }; } //三角形の面積 ld area(Point a, Point b, Point c) { ld x1 = real(b) - real(a), y1 = imag(b) - imag(a); ld x2 = real(c) - real(a), y2 = imag(c) - imag(a); return abs(x1 * y2 - y1 * x2) / 2.0; } //直線lに幅dをつける vector make_w(Line l, ld d) { Point dif = l.b - l.a; dif = dif * Point{ 0, 1 }; dif = dif * (d / abs(dif)); vector ret; for (int id = -1; id <= 1; id += 2) { Point a = l.a + dif * (ld)id; Point b = l.b + dif * (ld)id; ret.push_back({ a,b }); } return ret; } //mid_line of two lines vector mid_ll(Line l, Line m) { if (!isis_ll(l, m)) { ld u = dist_ll(l, m); Point d = l.b - l.a; Point md = d * exp(Point{ 0,pi / 2.0 }); Line l_ = { l.a,l.a + md }; Point ma = is_ll(l_, m); Point dif = ma - l.a; dif /= 2.0; Line res = { l.a + dif,(l.a + dif) + d }; return { res }; } else { Point p = is_ll(l, m); ld t1 = arg(l.b - l.a); ld t2 = arg(m.b - m.a); ld t = (t1 + t2) / 2.0; Point dif = { cos(t),sin(t) }; Point np = p + dif; ld d1 = dist_lp(l, np); ld d2 = dist_lp(m, np); vector res; res.push_back({ p,p + dif }); t += pi / 2.0; dif = { cos(t),sin(t) }; res.push_back({ p,p + dif }); return res; } } void solve() { int n; cin >> n; vector x(n), y(n); rep(i, n)cin >> x[i] >> y[i]; if (n == 1) { cout << 1 << "\n"; return; } assert(n < 10); vector p(n); rep(i, n) { p[i] = { (ld)x[i],(ld)y[i] }; } vector vp = p; rep(i, n)Rep(j, i + 1, n) { rep(k, n)Rep(l, k+1, n) { if (P{ i,j } < P{ k,l }) { Line l1 = { p[i],p[j] }; Line l2 = { p[k],p[l] }; if (isis_ll(l1, l2)) { Point c = is_ll(l1, l2); bool valid = true; for (auto pre : vp) { if (abs(pre - c) < eps)valid = false; } if(valid) vp.push_back(c); } } } } int sz = vp.size(); //cout << sz << "\n"; //rep(i, sz)cout << vp[i] << "\n"; vector> vs(sz, vector(sz)); rep(i, sz)Rep(j, i + 1, sz) { Line l = { vp[i],vp[j] }; int val = 0; rep(k, n) { if (isis_sp(l, p[k]))val |= (1 << k); } vs[i][j] = vs[j][i] = val; } vector> dp(1<(sz,mod)); rep(i, sz) { int val = 0; rep(j, n) { ld d = abs(vp[i] - p[j]); if (d < eps) { val |= (1 << j); } } dp[val][i] = 0; } rep(i, (1 << n)) { rep(j, sz) { if (dp[i][j] == mod)continue; rep(k, sz) { if (j == k)continue; int ni = i | vs[j][k]; chmin(dp[ni][k], dp[i][j] + 1); } } } int ans = mod; rep(i, sz)chmin(ans, dp[(1 << n) - 1][i]); cout << ans << "\n"; } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(10); //init_f(); //init(); //expr(); //while(true) //int t; cin >> t; rep(i, t) solve(); return 0; }