def General_Binary_Decrease_Search_Integer(L, R, cond, default=None): """ 条件式が単調減少であるとき, 整数上で二部探索を行う. L: 解の下限 R: 解の上限 cond: 条件 (1変数関数, 広義単調減少 を満たす) default: R で条件を満たさないときの返り値 """ if not(cond(L)): return default if cond(R): return R L-=1 while R-L>1: C=L+(R-L)//2 if cond(C): L=C else: R=C return L #================================================== def solve(): from itertools import product N=int(input()) X=0 for a,b in product(range(10), repeat=2): if a==b: continue check=lambda p:N*(a*p+b)>(p*p-1) p_max=General_Binary_Decrease_Search_Integer(max(a,b)+1, 10**9, check, 0) X+=max(p_max-max(a,b), 0) return X #================================================== print(solve())