import sys from typing import List input = sys.stdin.readline #BEGIN: https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98 def gcd(a: int, b: int) -> int: while b: a, b = b, a % b return a def isPrimeMR(n: int): d = n - 1 d = d // (d & -d) L = [2] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n: int): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 x = ys = y while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret #END: https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98 def divisors(factorized): res = [1] for p, c in factorized: siz = len(res) for i in range(siz): d = res[i] for _ in range(c): d *= p res.append(d) res.sort() return res P = 998244353 t, m = map(int, input().split()) pf = primeFactor(m).keys() k = len(pf) m_div_p = [m // p for p in pf] def popcount_parity_16(x: int): x = x - ((x >> 1) & 0x5555) x = (x & 0x3333) + ((x >> 2) & 0x3333) x = (x + (x >> 4)) & 0x0f0f x = x + (x >> 8) return x & 1 def subset_zeta_product(f: List[int]): block = 1 while block < 1 << k: offset = 0 while offset < 1 << k: for i in range(offset, offset + block): f[i + block] = f[i + block] * f[i] % P offset += 2 * block block <<= 1 def solve(): n, x0, c, d = map(int, input().split()) w = [x0] for i in range(n - 1): w.append((c * w[i] + d) % P) a = list(map(int, input().split())) zeta = [1] * (1 << k) for ai, wi in zip(a, w): if m % ai: continue t = 0 for j, mp in enumerate(m_div_p): t |= (mp % ai != 0) << j zeta[t] = zeta[t] * (1 + wi) % P subset_zeta_product(zeta) ans = 0 for s in range(1 << k): if popcount_parity_16(s): ans -= zeta[s] else: ans += zeta[s] if m == 1: ans -= 1 print(ans % P) for _ in range(t): solve()