from typing import List from math import gcd # https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98 class PrimeFactorize: @staticmethod def __isPrimeMR(n: int): d = n - 1 d = d // (d & -d) L = [2] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 @staticmethod def __findFactorRho(n: int): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 x = ys = y while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if PrimeFactorize.__isPrimeMR(g): return g elif PrimeFactorize.__isPrimeMR(n // g): return n // g return PrimeFactorize.__findFactorRho(g) @staticmethod def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if PrimeFactorize.__isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = PrimeFactorize.__findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret P = 998244353 t, m = map(int, input().split()) pf = PrimeFactorize.primeFactor(m).keys() k = len(pf) parity = [(-1) ** bin(s).count('1') for s in range(1 << k)] def subset_zeta_product(f: List[int]): block = 1 while block < 1 << k: offset = 0 while offset < 1 << k: for i in range(offset, offset + block): f[i + block] = f[i + block] * f[i] % P offset += 2 * block block <<= 1 def solve(): _, x0, c, d = map(int, input().split()) prod = [1] * (1 << k) wi = x0 for ai in map(int, input().split()): q, r = divmod(m, ai) if r == 0: t = 0 for j, p in enumerate(pf): t |= (q % p != 0) << j prod[t] = prod[t] * (1 + wi) % P wi = (c * wi + d) % P subset_zeta_product(prod) ans = 0 for s in range(1 << k): ans += parity[s] * prod[s] if m == 1: ans -= 1 print(ans % P) for _ in range(t): solve()