#include using namespace std; typedef long long ll; #define ALL(x) (x).begin(), (x).end() #ifdef LOCAL #include "debug.hpp" #else #define debug(...) void(0) #endif template istream& operator>>(istream& is, vector& v) { for (T& x : v) is >> x; return is; } template ostream& operator<<(ostream& os, const vector& v) { for (size_t i = 0; i < v.size(); i++) { os << v[i] << (i + 1 == v.size() ? "" : " "); } return os; } template T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; } template T lcm(T x, T y) { return x / gcd(x, y) * y; } int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); } int topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); } int botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); } int botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); } int popcount(signed t) { return __builtin_popcount(t); } int popcount(long long t) { return __builtin_popcountll(t); } bool ispow2(int i) { return i && (i & -i) == i; } long long MSK(int n) { return (1LL << n) - 1; } template T ceil(T x, T y) { assert(y >= 1); return (x > 0 ? (x + y - 1) / y : x / y); } template T floor(T x, T y) { assert(y >= 1); return (x > 0 ? x / y : (x - y + 1) / y); } template inline bool chmin(T1& a, T2 b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T1& a, T2 b) { if (a < b) { a = b; return true; } return false; } template void mkuni(vector& v) { sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); } template int lwb(const vector& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); } const int INF = (1 << 30) - 1; const long long IINF = (1LL << 60) - 1; const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; const int MOD = 998244353; // const int MOD = 1000000007; #include #include #include namespace elementary_math { template std::vector divisor(T n) { std::vector res; for (T i = 1; i * i <= n; i++) { if (n % i == 0) { res.emplace_back(i); if (i * i != n) res.emplace_back(n / i); } } return res; } template std::vector> prime_factor(T n) { std::vector> res; for (T p = 2; p * p <= n; p++) { if (n % p == 0) { res.emplace_back(p, 0); while (n % p == 0) { res.back().second++; n /= p; } } } if (n > 1) res.emplace_back(n, 1); return res; } std::vector osa_k(int n) { std::vector min_factor(n + 1, 0); for (int i = 2; i <= n; i++) { if (min_factor[i]) continue; for (int j = i; j <= n; j += i) { if (!min_factor[j]) { min_factor[j] = i; } } } return min_factor; } std::vector prime_factor(const std::vector& min_factor, int n) { std::vector res; while (n > 1) { res.emplace_back(min_factor[n]); n /= min_factor[n]; } return res; } long long modpow(long long x, long long n, long long mod) { assert(0 <= n && 1 <= mod && mod < (1LL << 31)); if (mod == 1) return 0; x %= mod; long long res = 1; while (n > 0) { if (n & 1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } long long extgcd(long long a, long long b, long long& x, long long& y) { long long d = a; if (b != 0) { d = extgcd(b, a % b, y, x); y -= (a / b) * x; } else x = 1, y = 0; return d; } long long inv_mod(long long a, long long mod) { assert(1 <= mod); long long x, y; if (extgcd(a, mod, x, y) != 1) return -1; return (mod + x % mod) % mod; } template T euler_phi(T n) { auto pf = prime_factor(n); T res = n; for (const auto& p : pf) { res /= p.first; res *= p.first - 1; } return res; } std::vector euler_phi_table(int n) { std::vector res(n + 1, 0); iota(res.begin(), res.end(), 0); for (int i = 2; i <= n; i++) { if (res[i] != i) continue; for (int j = i; j <= n; j += i) res[j] = res[j] / i * (i - 1); } return res; } // minimum i > 0 s.t. x^i \equiv 1 \pmod{m} template T order(T x, T m) { T n = euler_phi(m); auto cand = divisor(n); sort(cand.begin(), cand.end()); for (auto& i : cand) { if (modpow(x, i, m) == 1) { return i; } } return -1; } template std::vector> quotient_ranges(T n) { std::vector> res; T m = 1; for (; m * m <= n; m++) res.emplace_back(m, m, n / m); for (; m >= 1; m--) { T l = n / (m + 1) + 1, r = n / m; if (l <= r and std::get<1>(res.back()) < l) res.emplace_back(l, r, n / l); } return res; } } // namespace elementary_math ll SQRT(ll x) { ll lb = 0, ub = INF; while (ub - lb > 1) { ll mid = (ub + lb) >> 1; (mid * mid <= x ? lb : ub) = mid; } return lb; } void solve() { ll S, T; cin >> S >> T; if (T & 1) { cout << 0 << '\n'; return; } ll s = T / 2, prod = 1LL * S * S; if (prod % s != 0) { cout << 0 << '\n'; return; } prod /= s; auto facs = elementary_math::prime_factor(S); for (auto& p : facs) p.second *= 2; vector> ans; auto dfs = [&](auto self, int d, ll cur) -> void { if (d == (int)facs.size()) { ll c = s - cur; if (c <= 0) return; if (c * 3 <= T) return; if (prod % cur != 0) return; ll SUM = T - c, PROD = prod / cur; PROD -= s * s - SUM * s; ll tmp = SUM * SUM - 4 * PROD; if (tmp < 0) return; ll r = SQRT(tmp); if (r * r != tmp) return; if ((SUM + r) & 1) return; ll a = (SUM + r) >> 1, b = SUM - a; if (a <= 0 or b <= 0) return; if (a > c or b > c) return; vector v = {a, b, c}; sort(v.begin(), v.end()); ans.emplace_back(v); return; } ll nxt = cur, p = facs[d].first; for (int i = 0; i < facs[d].second; i++, nxt *= p) self(self, d + 1, nxt); }; dfs(dfs, 0, 1); cout << ans.size() << '\n'; for (auto& t : ans) cout << t << '\n'; } int main() { cin.tie(0); ios::sync_with_stdio(false); int t; cin >> t; for (; t--;) solve(); return 0; }