#include using namespace std; using ll = long long; //#include //using namespace atcoder; //using mint = modint998244353; # define M_PI 3.14159265358979323846 /* pi */ #define watch(x) cout << (#x) << " is " << (x) << endl //#pragma GCC target ("avx2") #pragma GCC optimization ("O3") //const int MOD = (1e9+7); template < typename T = int > ostream& operator << (ostream &out, const vector < T > &v){ for (const T &x: v) out << x << ' '; return out; } void printmat(const vector>& mat) { for (auto row : mat) { for (auto elem : row) cout << elem << " "; cout << "\n"; } } void printdq(const deque& v) { for (auto elem : v) cout << elem << " "; cout << endl; } void printv(const vector& v) { for (auto elem : v) cout << elem << " "; cout << "\n"; } void printvll(const vector& v) { for (auto elem : v) cout << elem << " "; cout << endl; } void printd(const deque& v) { for (auto elem : v) cout << elem << " "; cout << endl; } void printvp(const vector>& vp) { for (auto pr : vp) { cout << pr.first << " " << pr.second; cout << "\n"; } } void printvs(const vector>& vs) { for (auto row : vs) { for (auto elem : row) cout << elem << ", "; cout << endl; } } void printht(const unordered_map& ht) { for (auto elem : ht) cout << elem.first << " : " << elem.second << endl; } void printmp(const map& ht) { for (auto elem : ht) cout << elem.first << " : " << elem.second << endl; } void printst(const set& st) { for (auto elem : st) cout << elem << " "; cout << endl; } bool isPrime(long long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long long i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } map primeFactors(long long n) { map ans; while (n % 2 == 0) { ans[2]++; n = n/2; } for (long long i = 3; i*i <= (n); i = i + 2) { while (n % i == 0) { ans[i]++; n = n/i; } } if (n > 2) ans[n]++; return ans; } int find_f(const vector& uf, int i) { while (uf[i]!=i) i = uf[i]; return i; } bool union_f(vector& uf, vector& sz, int a, int b) { a = find_f(uf, a); b = find_f(uf, b); //cout << "a, b = " << a << ", " << b << endl; if (a==b) return false; if (sz[a] < sz[b]) { //cout << "sz[a], sz[b] = " << sz[a] << ", " << sz[b] << endl; //cout << "a, b = " << a << ", " << b << endl; swap(a,b); //cout << "a, b = " << a << ", " << b << endl; } sz[a] += sz[b]; uf[b] = a; return true; } long long modexp(long long b, long long e, long long M) { if (!e) return 1; b %= M; long long x = modexp(b * b % M, e / 2, M); if (e % 2) { return b * x % M; } else { return x; } } ll gcdExtended(ll a, ll b, ll* x, ll* y) { if (a == 0) { *x = 0, *y = 1; return b; } ll x1, y1; ll gcd = gcdExtended(b % a, a, &x1, &y1); *x = y1 - (b / a) * x1; *y = x1; return gcd; } ll modInverse(ll a, ll m) { ll x, y, res=-1; ll g = gcdExtended(a, m, &x, &y); if (g != 1) { //cout << "Inverse doesn't exist"; res = -1; } else { // m is added to handle negative x res = (x % m + m) % m; } return res; } int lenOfLIS(vector& v) { int n = v.size(), len = 0; vector dp(n,0); for (int num : v) { int i = lower_bound(dp.begin(), dp.begin()+len, num) - dp.begin(); dp[i] = num; if (i == len) { len++; } } return len; } const int MOD = 1e9 + 7; struct mi { int v; explicit operator int() const { return v; } mi() { v = 0; } mi(long long _v) : v(_v % MOD) { v += (v < 0) * MOD; } }; mi& operator+=(mi& a, mi b) { if ((a.v += b.v) >= MOD) a.v -= MOD; return a; } mi& operator-=(mi& a, mi b) { if ((a.v -= b.v) < 0) a.v += MOD; return a; } mi operator+(mi a, mi b) { return a += b; } mi operator-(mi a, mi b) { return a -= b; } mi operator*(mi a, mi b) { return mi((long long) a.v * b.v); } mi& operator*=(mi& a, mi b) { return a = a * b; } mi pow(mi a, long long p) { assert(p >= 0); return p == 0 ? 1 : pow(a * a, p / 2) * (p & 1 ? a : 1); } mi inv(mi a) { assert(a.v != 0); return pow(a, MOD - 2); } mi operator/(mi a, mi b) { return a * inv(b); } // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[]. int getSum(int BITree[], int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index>0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given index // in BITree. The given value 'val' is added to BITree[i] and // all of its ancestors in tree. void updateBIT(int BITree[], int n, int index, int val) { // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Constructs and returns a Binary Indexed Tree for given // array of size n. int *constructBITree(vector& arr, int n) { // Create and initialize BITree[] as 0 int *BITree = new int[n+1]; for (int i=1; i<=n; i++) BITree[i] = 0; // Store the actual values in BITree[] using update() for (int i=0; i> T; while (T--) { //caseIdx++; int Q; cin >> Q; vector cnt(32); map mp; for (int dummy=0; dummy> type; if (type==1) { cin >> x; if (mp.find(x)==mp.end()) { for (int i=0; i<32; i++) { if (x&(1LL<> x; if (mp.find(x)!=mp.end()) { for (int i=0; i<32; i++) { if (x&(1LL<