#pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #include #include #include #include #include #include using namespace std; using ll = long long; #define MAIN main #define TYPE_OF( VAR ) remove_const::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n"; #define RETURN( ANSWER ) COUT( ANSWER ); QUIT template inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } template void SetPrimeFactorisation( const INT& n , vector& P , vector& exponent ) { INT n_copy = n; INT p = 2; if( n_copy % p == 0 ){ P.push_back( p ); exponent.push_back( 1 ); INT& exponent_back = exponent.back(); n_copy /= p; while( n_copy % p == 0 ){ exponent_back++; n_copy /= p; } } p++; while( p * p <= n_copy ){ if( n_copy % p == 0 ){ P.push_back( p ); exponent.push_back( 1 ); INT& exponent_back = exponent.back(); n_copy /= p; while( n_copy % p == 0 ){ exponent_back++; n_copy /= p; } } p += 2; } if( n_copy != 1 ){ P.push_back( n_copy ); exponent.push_back( 1 ); } return; } template INT EulerFunction( const INT& n , vector& P , vector& exponent ) { SetPrimeFactorisation( n , P , exponent ); INT answer = n; INT size = P.size(); for( INT i = 0 ; i < size ; i++ ){ const INT& P_i = P[i]; answer -= answer / P_i; } return answer; } class MG { public: // 法B static ll g_B; // Bの素因数 static vector g_prime; // Bの素因数の指数 static vector g_exponent; // g_primeの長さ static int g_size; // Bのオイラー関数引く1; static ll g_euler_minus; // 単位元 static MG g_e; // 乗法群(Z/BZ)^xの元 ll m_n; // Bの素因数の生成する乗法群の元 vector m_factor; // 0が形式的に生成する自由群の元 int m_zero; inline MG() : m_n() , m_factor() , m_zero() {} inline MG( const MG& n ) : m_n( n.m_n ) , m_factor( n.m_factor ) , m_zero( n.m_zero ) {} inline MG( MG&& n ) : m_n( move( n.m_n ) ) , m_factor( move( n.m_factor ) ) , m_zero( move( n.m_zero ) ) {} inline MG( ll&& n ) : m_n( move( n ) ) , m_factor( g_size ) , m_zero() { if( m_n == 0 ){ m_n = 1; m_zero++; } else { FOR( i , 0 , g_size ){ int& prime_i = g_prime[i]; int& factor_i = m_factor[i]; while( m_n % prime_i == 0 ){ m_n /= prime_i; factor_i++; } } m_n = Residue( m_n , MG::g_B ); } } inline MG& operator=( const MG& n ) { m_n = n.m_n; m_factor = n.m_factor; m_zero = n.m_zero; return *this; } inline MG& operator=( MG&& n ) { m_n = move( n.m_n ); m_factor = move( n.m_factor ); m_zero = move( n.m_zero ); return *this; } }; ll MG::g_B{}; vector MG::g_prime{}; vector MG::g_exponent{}; int MG::g_size{}; ll MG::g_euler_minus{ 1 }; MG MG::g_e{}; // 乗法 inline MG op( const MG& n0 , const MG& n1 ) { MG answer{ n0 }; if( ! n0.m_factor.empty() && ! n1.m_factor.empty() ){ ( answer.m_n *= n1.m_n ) %= MG::g_B; FOR( i , 0 , MG::g_size ){ answer.m_factor[i] += n1.m_factor[i]; }; answer.m_zero += n1.m_zero; } return answer; } // 単位元 inline const MG& e() { return MG::g_e; } // 逆元 inline MG inv( const MG& n ) { MG answer{ n }; answer.m_n = 1; ll power = n.m_n; ll exponent = MG::g_euler_minus; while( exponent != 0 ){ if( ( exponent & 1 ) == 1 ){ ( answer.m_n *= power ) %= MG::g_B; } ( power *= power ) %= MG::g_B; exponent >>= 1; } FOR( i , 0 , MG::g_size ){ answer.m_factor[i] *= -1; } answer.m_zero *= -1; return answer; } #define TEMPLETE_ARGUMENTS_FOR_BIT typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&) , int N // 可換群(T,m_T:T^2->T,e_T:1->T,i_T:T->T)と非負整数Nをパラメータとする。 // ただしi_Tを使うのはSetとIntervalSumのみなので、 // AddとInitialSegmentSumしか使わない場合は // i_Tを好きに設定して(T,m_T,e_T)をモノイドとして良い。 template class AbstractBIT { private: T m_fenwick[N + 1]; public: static const T& g_e; inline AbstractBIT(); AbstractBIT( const T ( & a )[N] ); inline void Set( const int& i , const T& n ); inline AbstractBIT& operator+=( const T ( & a )[N] ); void Add( const int& i , const T& n ); T InitialSegmentSum( const int& i_final ); inline T IntervalSum( const int& i_start , const int& i_final ); }; template inline const T& AbstractBIT::g_e = e_T(); template inline AbstractBIT::AbstractBIT() : m_fenwick() { const T& e = g_e; for( int i = 0 ; i <= N ; i++ ){ m_fenwick[i] = e; } } template AbstractBIT::AbstractBIT( const T ( & a )[N] ) : m_fenwick() { for( int j = 1 ; j <= N ; j++ ){ T& fenwick_j = m_fenwick[j]; int i = j - 1; fenwick_j = a[i]; int i_lim = j - ( j & -j ); while( i != i_lim ){ fenwick_j = m_T( fenwick_j , m_fenwick[i] ); i -= ( i & -i ); } } } template inline void AbstractBIT::Set( const int& i , const T& n ) { Add( i , m_T( i_T( IntervalSum( i , i ) ) , n ) ); } template inline AbstractBIT& AbstractBIT::operator+=( const T ( & a )[N] ) { for( int i = 0 ; i < N ; i++ ){ Add( i , a[i] ); } return *this; } template void AbstractBIT::Add( const int& i , const T& n ) { int j = i + 1; while( j <= N ){ T& m_fenwick_j = m_fenwick[j]; m_fenwick_j = m_T( m_fenwick_j , n ); j += ( j & -j ); } return; } template T AbstractBIT::InitialSegmentSum( const int& i_final ) { T sum = g_e; int j = ( i_final < N ? i_final : N - 1 ) + 1; while( j > 0 ){ sum = m_T( sum , m_fenwick[j] ); j -= j & -j; } return sum; } template inline T AbstractBIT::IntervalSum( const int& i_start , const int& i_final ) { return m_T( i_T( InitialSegmentSum( i_start - 1 ) ) , InitialSegmentSum( i_final ) ); } int MAIN() { UNTIE; CEXPR( int , bound_NQ , 100000 ); CIN_ASSERT( N , 1 , bound_NQ ); CEXPR( int , bound_B , 1000000000 ); CIN_ASSERT( B , 1 , bound_B ); MG::g_B = B; MG::g_euler_minus = EulerFunction( B , MG::g_prime , MG::g_exponent ) - 1; MG::g_size = MG::g_prime.size(); MG::g_e.m_n = 1; MG::g_e.m_factor = vector( MG::g_size ); CIN_ASSERT( Q , 1 , bound_NQ ); CEXPR( ll , bound_Am , 1000000000000000000 ); static MG A_prep[bound_NQ] = {}; FOR( i , 0 , N ){ CIN_ASSERT( Ai , 0 , bound_Am ); A_prep[i] = MG( move( Ai ) ); } AbstractBIT A{ A_prep }; N--; MG B_inv = MG( B ); FOR( i , 0 , MG::g_size ){ B_inv.m_factor[i] *= -1; } REPEAT( Q ){ CIN_ASSERT( j , 0 , N ); CIN_ASSERT( m , 0 , bound_Am ); CIN_ASSERT( l , 0 , N ); CIN_ASSERT( r , l , N ); MG A_j = A.IntervalSum( j , j ); if( A_j.m_zero == 0 ){ if( m == 0 ){ A.Set( j , MG( move( m ) ) ); } else { bool divisible = m == MG::g_B ; if( divisible ){ FOR( i , 0 , MG::g_size ){ if( A_j.m_factor[i] < MG::g_exponent[i] ){ divisible = false; break; } } } if( divisible ){ A.Add( j , B_inv ); } else { A.Add( j , MG( move( m ) ) ); } } } MG A_lr = A.IntervalSum( l , r ); if( A_lr.m_zero > 0 ){ COUT( 0 ); } else { ll answer = A_lr.m_n; FOR( i , 0 , MG::g_size ){ ll power = MG::g_prime[i]; int factor_i = A_lr.m_factor[i]; while( factor_i != 0 ){ if( ( factor_i & 1 ) == 1 ){ ( answer *= power ) %= MG::g_B; } ( power *= power ) %= MG::g_B; factor_i >>= 1; } } COUT( answer ); } } QUIT; }