# N個の(r_i, m_i)に対して 0 <= x < LCM(m_1, ... , m_N) かつ x mod m_i = r_i (1 <= i <= N)を満たすものが存在すれば一意に定まる def gcd(a, b): if b == 0 : return a else : return gcd(b, a%b) def crt(r, m): assert len(r) == len(m) n = len(r) r0, m0 = 0, 1 # 初期値 x = 0 (mod 1) for i in range(n): assert m[i] >= 1 #r1, m1は遷移に使う値 r1, m1 = r[i] % m[i], m[i] #m0がm1以上になるようにする。 if m0 < m1: r0, r1 = r1, r0 m0, m1 = m1, m0 # m0がm1の倍数のとき gcdはm1、lcmはm0 # 解が存在すれば何も変わらないので以降の手順はスキップ if m0 % m1 == 0: if r0 % m1 != r1: return [0, 0] continue # 拡張ユークリッドの互除法によりgcd(m0, m1)と m0 * im = gcd (mod m1) を満たす imを求める g = gcd(m0, m1) im = (g * pow(m0, -1, m1)) % m1 # 解の存在条件の確認 if (r1 - r0) % g: return [0, 0] """ r0, m0の遷移 コメントアウト部分はACLでの実装 C++なのでlong longを超えないようにしている C++ はlcm(m0, m1)で割った余りが負になり得る """ # u1 = m1 // g # x = (r1 - r0) // g % u1 * im % u1 # r0 += x * m0 # m0 *= u1 u1 = m0 * m1 // g r0 += (r1 - r0) // g * m0 * im % u1 m0 = u1 #if r0 < 0: r0 += m0 return [r0, m0] r = [] m = [] for i in range(3): a, b = map(int, input().split()) r.append(a) m.append(b) print(crt(r, m)) # [18, 35]