#pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; //constexpr ll mod = 998244353; constexpr ll mod = 1000000007; const ll INF = mod * mod; typedef pairP; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair LP; template void chmin(T& a, T b) { a = min(a, b); } template void chmax(T& a, T b) { a = max(a, b); } template void cinarray(vector& v) { rep(i, v.size())cin >> v[i]; } template void coutarray(vector& v) { rep(i, v.size()) { if (i > 0)cout << " "; cout << v[i]; } cout << "\n"; } ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; //if (x == 0)return 0; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } //mod should be <2^31 struct modint { int n; modint() :n(0) { ; } modint(ll m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } n = m; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } bool operator<(modint a, modint b) { return a.n < b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 22; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } using ld = long double; //typedef long double ld; typedef pair LDP; const ld eps = 1e-10; const ld pi = acosl(-1.0); template void addv(vector& v, int loc, T val) { if (loc >= v.size())v.resize(loc + 1, 0); v[loc] += val; } /*const int mn = 2000005; bool isp[mn]; vector ps; void init() { fill(isp + 2, isp + mn, true); for (int i = 2; i < mn; i++) { if (!isp[i])continue; ps.push_back(i); for (int j = 2 * i; j < mn; j += i) { isp[j] = false; } } }*/ //[,val) template auto prev_itr(set& st, T val) { auto res = st.lower_bound(val); if (res == st.begin())return st.end(); res--; return res; } //[val,) template auto next_itr(set& st, T val) { auto res = st.lower_bound(val); return res; } using mP = pair; mP operator+(mP a, mP b) { return { a.first + b.first,a.second + b.second }; } mP operator+=(mP& a, mP b) { a = a + b; return a; } mP operator-(mP a, mP b) { return { a.first - b.first,a.second - b.second }; } mP operator-=(mP& a, mP b) { a = a - b; return a; } LP operator+(LP a, LP b) { return { a.first + b.first,a.second + b.second }; } LP operator+=(LP& a, LP b) { a = a + b; return a; } LP operator-(LP a, LP b) { return { a.first - b.first,a.second - b.second }; } LP operator-=(LP& a, LP b) { a = a - b; return a; } mt19937 mt(time(0)); const string drul = "DRUL"; string senw = "SENW"; //DRUL,or SENW int dx[4] = { 1,0,-1,0 }; int dy[4] = { 0,1,0,-1 }; //----------------------------------------- void expr() { for (int n = 1; n <= 10; n++) { vector f(n + 1); vector res(n + 1); for (int i = n; i >= 0; i--) { modint coef = (modint)1 - f[i]; res[i] = coef; rep(j, i + 1) { f[j] += coef * comb(i,j); } } rep(i, res.size()) { if ((n + i) % 2)res[i] *= -1; } res.erase(res.begin()); coutarray(res); } } int get_premitive_root(const ll& p) { int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { set fac; int v = p - 1; for (ll i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < p; g++) { bool ok = true; for (auto i : fac) if (mod_pow(g, (p - 1) / i, p) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } typedef vector poly; void dft(poly& f, const ll& p, const int& proot, bool inverse = false) { int n = f.size(); if (n == 1)return; poly w{ 1 }, iw{ 1 }; for (int m = w.size(); m < n / 2; m *= 2) { ll dw = mod_pow(proot, (p - 1) / (4 * m), p), dwinv = mod_pow(dw, p - 2, p); w.resize(m * 2); iw.resize(m * 2); for (int i = 0; i < m; i++)w[m + i] = w[i] * dw % p, iw[m + i] = iw[i] * dwinv % p; } if (!inverse) { for (int m = n; m >>= 1;) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { ll x = f[i], y = f[i + m] * w[k] % p; f[i] = x + y, f[i + m] = x - y; if (f[i] >= p)f[i] -= p; if (f[i + m] < 0)f[i + m] += p; } } } } else { for (int m = 1; m < n; m *= 2) { for (int s = 0, k = 0; s < n; s += 2 * m, k++) { for (int i = s; i < s + m; i++) { ll x = f[i], y = f[i + m]; f[i] = x + y, f[i + m] = (x - y) * iw[k] % p; if (f[i] >= p)f[i] -= p; if (f[i + m] < 0)f[i + m] += p; } } } ll n_inv = mod_pow(n, p - 2, p); for (ll& v : f)(v *= n_inv) %= p; } } poly multi(poly g, poly h, const ll& p, int n) { const int proot = get_premitive_root(p); dft(g, p, proot, false); dft(h, p, proot, false); poly f(n); rep(i, n) { f[i] = g[i] * h[i] % p; } dft(f, p, proot, true); return f; } constexpr ll m0 = 469762049; constexpr ll m1 = 167772161; constexpr ll m2 = 595591169; const ll inv01 = mod_pow(m0, m1 - 2, m1); const ll inv012 = mod_pow(m0 * m1, m2 - 2, m2); ll calc(ll& a, ll& b, ll& c, const ll& p) { ll res = 0; ll x1 = a; ll x2 = (b - x1) * inv01; x2 %= m1; if (x2 < 0)x2 += m1; ll x3 = (c - x1 - x2 * m0) % m2 * inv012; x3 %= m2; if (x3 < 0)x3 += m2; res = x1 + x2 * m0 % p + x3 * m0 % p * m1; return res % p; } poly multiply(poly g, poly h, const ll& p=mod) { int resz = g.size() + h.size() - 1; int n = 1; int pi = 0, qi = 0; rep(i, g.size())if (g[i])pi = i; rep(i, h.size())if (h[i])qi = i; int sz = pi + qi + 2; while (n < sz)n *= 2; g.resize(n); h.resize(n); poly vp[3]; vp[0] = multi(g, h, m0, n); vp[1] = multi(g, h, m1, n); vp[2] = multi(g, h, m2, n); poly res(resz); rep(i, res.size()) { ll a, b, c; if (i < vp[0].size())a = vp[0][i]; else a = 0; if (i < vp[1].size())b = vp[1][i]; else b = 0; if (i < vp[2].size())c = vp[2][i]; else c = 0; res[i] = calc(a, b, c, p); } return res; } struct FormalPowerSeries :vector { using vector::vector; using fps = FormalPowerSeries; void shrink() { while (this->size() && this->back() == (modint)0)this->pop_back(); } fps operator+(const fps& r)const { return fps(*this) += r; } fps operator+(const modint& v)const { return fps(*this) += v; } fps operator-(const fps& r)const { return fps(*this) -= r; } fps operator-(const modint& v)const { return fps(*this) -= v; } fps operator*(const fps& r)const { return fps(*this) *= r; } fps operator*(const modint& v)const { return fps(*this) *= v; } fps& operator+=(const fps& r) { if (r.size() > this->size())this->resize(r.size()); rep(i, r.size())(*this)[i] += r[i]; shrink(); return *this; } fps& operator+=(const modint& v) { if (this->empty())this->resize(1); (*this)[0] += v; shrink(); return *this; } fps& operator-=(const fps& r) { if (r.size() > this->size())this->resize(r.size()); rep(i, r.size())(*this)[i] -= r[i]; shrink(); return *this; } fps& operator-=(const modint& v) { if (this->empty())this->resize(1); (*this)[0] -= v; shrink(); return *this; } fps& operator*=(const fps& r) { if (this->empty() || r.empty())this->clear(); else { auto& cop = *this; poly p(cop.size()); rep(i, cop.size())p[i] = cop[i]; poly q(r.size()); rep(i, r.size()) { modint x = r[i]; q[i] = x; } poly ret = multiply(p,q); *this = fps(all(ret)); } shrink(); return *this; } fps& operator*=(const modint& v) { for (auto& x : (*this))x *= v; shrink(); return *this; } fps operator-()const { fps ret = *this; for (auto& v : ret)v = -v; return ret; } modint sub(modint x) { modint t = 1; modint res = 0; rep(i, (*this).size()) { res += t * (*this)[i]; t *= x; } return res; } fps pre(int sz)const { fps ret(this->begin(), this->begin() + min((int)this->size(), sz)); ret.shrink(); return ret; } fps integral() const { const int n = (int)this->size(); fps ret(n + 1); ret[0] = 0; for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / (modint)(i + 1); return ret; } fps inv(int deg = -1)const { const int n = this->size(); if (deg == -1)deg = n; fps ret({ (modint)1 / (*this)[0] }); for (int i = 1; i < deg; i <<= 1) { ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1); } ret = ret.pre(deg); ret.shrink(); return ret; } fps diff() const { const int n = (int)this->size(); fps ret(max(0, n - 1)); for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * (modint)i; return ret; } // F(0) must be 1 fps log(int deg = -1) const { assert((*this)[0] == 1); const int n = (int)this->size(); if (deg == -1) deg = n; return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } // F(0) must be 0 fps exp(int deg = -1)const { assert((*this)[0] == 0); const int n = (int)this->size(); if (deg == -1)deg = n; fps ret = { 1 }; for (int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + 1 - ret.log(i << 1))).pre(i << 1); } //cout << "!!!! " << ret.size() << "\n"; return ret.pre(deg); } fps div(fps g) { assert(g.size() && g.back() != (modint)0); fps f = *this; if (f.size() < g.size())return {}; int dif = f.size() - g.size(); reverse(all(f)); reverse(all(g)); g = g.inv(dif + 1); fps fg = f * g; fps ret(dif + 1); rep(i, fg.size()) { int id = i - dif; if (-dif <= id && id <= 0) { ret[-id] = fg[i]; } } return ret; } fps divr(fps g) { fps ret = (*this) - g * (*this).div(g); ret.shrink(); return ret; } }; using fps = FormalPowerSeries; void solve() { int x, y, z; cin >> x >> y >> z; if (x == 0 && y == 0 && z == 0) { cout << 1 << "\n"; return; } int n = x + y + z; fps f(n + 1); rep1(i, n) { f[i] = comb(x + i - 1, x) * comb(y + i - 1, y) * comb(z + i - 1, z); } //coutarray(f); fps g(n + 1); rep(i, n + 1) { g[i] = factinv[i]; } //coutarray(g); g = g.inv(); //coutarray(g); rep(i, n + 1)f[i] *= factinv[i]; fps h = f * g; //coutarray(h); h.resize(n + 1); rep(i, n + 1) { h[i] *= fact[i]; } modint ans = 0; rep(i, n + 1)ans += h[i]; cout << ans << "\n"; } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(10); init_f(); //init(); //expr(); //while(true) //int t; cin >> t; rep(i, t) solve(); return 0; }