#pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; //constexpr ll mod = 998244353; constexpr ll mod = 1000000007; const ll INF = mod * mod; typedef pairP; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair LP; template void chmin(T& a, T b) { a = min(a, b); } template void chmax(T& a, T b) { a = max(a, b); } template void cinarray(vector& v) { rep(i, v.size())cin >> v[i]; } template void coutarray(vector& v) { rep(i, v.size()) { if (i > 0)cout << " "; cout << v[i]; } cout << "\n"; } ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; //if (x == 0)return 0; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } //mod should be <2^31 struct modint { int n; modint() :n(0) { ; } modint(ll m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } n = m; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } bool operator<(modint a, modint b) { return a.n < b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 22; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } using ld = long double; //typedef long double ld; typedef pair LDP; const ld eps = 1e-10; const ld pi = acosl(-1.0); template void addv(vector& v, int loc, T val) { if (loc >= v.size())v.resize(loc + 1, 0); v[loc] += val; } /*const int mn = 2000005; bool isp[mn]; vector ps; void init() { fill(isp + 2, isp + mn, true); for (int i = 2; i < mn; i++) { if (!isp[i])continue; ps.push_back(i); for (int j = 2 * i; j < mn; j += i) { isp[j] = false; } } }*/ //[,val) template auto prev_itr(set& st, T val) { auto res = st.lower_bound(val); if (res == st.begin())return st.end(); res--; return res; } //[val,) template auto next_itr(set& st, T val) { auto res = st.lower_bound(val); return res; } using mP = pair; mP operator+(mP a, mP b) { return { a.first + b.first,a.second + b.second }; } mP operator+=(mP& a, mP b) { a = a + b; return a; } mP operator-(mP a, mP b) { return { a.first - b.first,a.second - b.second }; } mP operator-=(mP& a, mP b) { a = a - b; return a; } LP operator+(LP a, LP b) { return { a.first + b.first,a.second + b.second }; } LP operator+=(LP& a, LP b) { a = a + b; return a; } LP operator-(LP a, LP b) { return { a.first - b.first,a.second - b.second }; } LP operator-=(LP& a, LP b) { a = a - b; return a; } mt19937 mt(time(0)); const string drul = "DRUL"; string senw = "SENW"; //DRUL,or SENW int dx[4] = { 1,0,-1,0 }; int dy[4] = { 0,1,0,-1 }; //----------------------------------------- int bsf(int x) { int res = 0; while (!(x & 1)) { res++; x >>= 1; } return res; } int ceil_pow2(int n) { int x = 0; while ((1 << x) < n) x++; return x; } int get_premitive_root(const ll& p) { int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { set fac; int v = p - 1; for (ll i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < p; g++) { bool ok = true; for (auto i : fac) if (mod_pow(g, (p - 1) / i, p) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } const array ms = { 469762049,167772161,595591169 }; const array proots = { get_premitive_root(469762049),get_premitive_root(167772161),get_premitive_root(595591169) }; using poly = vector; using polys = array; void butterfly(polys& a) { int n = int(a[0].size()); array gs = proots; int h = ceil_pow2(n); static bool first = true; static ll sum_e[3][30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; ll es[3][30], ies[3][30]; // es[i]^(2^(2+i)) == 1 int cnt2[3]; rep(i, 3)cnt2[i] = bsf(ms[i] - 1); ll e[3]; rep(i, 3)e[i] = mod_pow(gs[i], (ms[i] - 1) >> cnt2[i], ms[i]); ll ie[3]; rep(i, 3)ie[i] = mod_pow(e[i], ms[i] - 2, ms[i]); rep(j, 3) { for (int i = cnt2[j]; i >= 2; i--) { // e^(2^i) == 1 es[j][i - 2] = e[j]; ies[j][i - 2] = ie[j]; e[j] *= e[j]; e[j] %= ms[j]; ie[j] *= ie[j]; ie[j] %= ms[j]; } } rep(j, 3) { ll now = 1; for (int i = 0; i < cnt2[j] - 2; i++) { sum_e[j][i] = es[j][i] * now % ms[j]; now *= ies[j][i]; now %= ms[j]; } } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); ll now[3] = { 1,1,1 }; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { rep(j, 3) { auto l = a[j][i + offset]; auto r = a[j][i + offset + p] * now[j] % ms[j]; a[j][i + offset] = l + r; if (a[j][i + offset] >= ms[j])a[j][i + offset] -= ms[j]; a[j][i + offset + p] = l - r; if (a[j][i + offset + p] < 0)a[j][i + offset + p] += ms[j]; } } rep(j, 3) { now[j] *= sum_e[j][bsf(~(unsigned int)(s))]; now[j] %= ms[j]; } } } } void butterfly_inv(polys& a) { int n = int(a[0].size()); array gs = proots; int h = ceil_pow2(n); static bool first = true; static ll sum_ie[3][30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; ll es[3][30], ies[3][30]; // es[i]^(2^(2+i)) == 1 int cnt2[3]; rep(i, 3)cnt2[i] = bsf(ms[i] - 1); ll e[3]; rep(i, 3)e[i] = mod_pow(gs[i], (ms[i] - 1) >> cnt2[i], ms[i]); ll ie[3]; rep(i, 3)ie[i] = mod_pow(e[i], ms[i] - 2, ms[i]); rep(j, 3) { for (int i = cnt2[j]; i >= 2; i--) { // e^(2^i) == 1 es[j][i - 2] = e[j]; ies[j][i - 2] = ie[j]; e[j] *= e[j]; e[j] %= ms[j]; ie[j] *= ie[j]; ie[j] %= ms[j]; } } rep(j, 3) { ll now = 1; for (int i = 0; i < cnt2[j] - 2; i++) { sum_ie[j][i] = ies[j][i] * now % ms[j]; now *= es[j][i]; now %= ms[j]; } } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); ll inow[3] = { 1,1,1 }; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { rep(j, 3) { auto l = a[j][i + offset]; auto r = a[j][i + offset + p]; a[j][i + offset] = l + r; if (a[j][i + offset] >= ms[j])a[j][i + offset] -= ms[j]; a[j][i + offset + p] = (ms[j] + l - r) * inow[j] % ms[j]; } } rep(j, 3) { inow[j] *= sum_ie[j][bsf(~(unsigned int)(s))]; inow[j] %= ms[j]; } } } } constexpr ll m0 = 469762049; constexpr ll m1 = 167772161; constexpr ll m2 = 595591169; const ll inv01 = mod_pow(m0, m1 - 2, m1); const ll inv012 = mod_pow(m0 * m1, m2 - 2, m2); ll calc(ll& a, ll& b, ll& c, const ll& p) { ll res = 0; ll x1 = a; ll x2 = (b - x1) * inv01; x2 %= m1; if (x2 < 0)x2 += m1; ll x3 = (c - x1 - x2 * m0) % m2 * inv012; x3 %= m2; if (x3 < 0)x3 += m2; res = x1 + x2 * m0 % p + x3 * m0 % p * m1; return res % p; } poly multiply(poly g, poly h, const ll& p) { int n = g.size(); int m = h.size(); if (n == 0 || m == 0)return {}; if (min(g.size(), h.size()) < 60) { poly res(g.size() + h.size() - 1); rep(i, g.size())rep(j, h.size()) { res[i + j] += g[i] * h[j]; res[i + j] %= p; } return res; } int z = 1 << ceil_pow2(n + m - 1); g.resize(z); h.resize(z); polys gs, hs; rep(j, 3) { gs[j].resize(z); hs[j].resize(z); rep(i, z) { gs[j][i] = g[i] % ms[j]; hs[j][i] = h[i] % ms[j]; } } butterfly(gs); butterfly(hs); rep(j, 3)rep(i, z) { (gs[j][i] *= hs[j][i]) %= ms[j]; } butterfly_inv(gs); rep(j, 3) { gs[j].resize(n + m - 1); ll iz = mod_pow(z, ms[j] - 2, ms[j]); rep(i, n + m - 1) { (gs[j][i] *= iz) %= ms[j]; } } poly res(n + m - 1); rep(i, n + m - 1) { res[i] = calc(gs[0][i], gs[1][i], gs[2][i], p); } return res; } void solve() { int x, y, z; cin >> x >> y >> z; if (x == 0 && y == 0 && z == 0) { cout << 1 << "\n"; return; } int n = x + y + z; poly f(n + 1); rep1(i, n) { f[i] = comb(x + i - 1, x) * comb(y + i - 1, y) * comb(z + i - 1, z); } //coutarray(f); poly g(n + 1); rep(i, n + 1) { modint val = factinv[i]; if (i % 2)val *= -1; g[i] = val; } rep(i, n + 1)(f[i] *= factinv[i]) %= mod; poly h = multiply(f, g, mod); //coutarray(h); h.resize(n + 1); rep(i, n + 1) { h[i] *= fact[i]; } modint ans = 0; rep(i, n + 1)ans += h[i]; cout << ans << "\n"; } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(10); init_f(); //init(); //expr(); //while(true) //int t; cin >> t; rep(i, t) solve(); return 0; }