#pragma GCC optimization ("O3") #include using namespace std; using ll = long long; using vec = vector; using mat = vector; using pll = pair; #define INF (1LL<<61) #define MOD 1000000007LL //#define MOD 998244353LL #define EPS (1e-10) #define PR(x) cout << (x) << endl #define PS(x) cout << (x) << " " #define REP(i,m,n) for(ll (i)=(m),(i_len)=(n);(i)<(i_len);++(i)) #define FORE(i,v) for(auto (i):v) #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((ll)(x).size()) #define REV(x) reverse(ALL((x))) #define ASC(x) sort(ALL((x))) #define DESC(x) {ASC((x)); REV((x));} #define BIT(s,i) (((s)>>(i))&1) #define pb push_back #define fi first #define se second template inline int chmin(T& a, T b) {if(a>b) {a=b; return 1;} return 0;} template inline int chmax(T& a, T b) {if(a=MOD) x-=MOD; return *this;} mint& operator-=(const mint& a) {if((x+=MOD-a.x)>=MOD) x-=MOD; return *this;} mint& operator*=(const mint& a) {(x*=a.x)%=MOD; return *this;} mint operator+(const mint& a) const {mint b(*this); return b+=a;} mint operator-(const mint& a) const {mint b(*this); return b-=a;} mint operator*(const mint& a) const {mint b(*this); return b*=a;} mint pow(ll t) const {if(!t) return 1; mint a=pow(t>>1); return (t&1?*this*a:a)*a;} mint inv() const {return pow(MOD-2);} mint& operator/=(const mint& a) {return *this*=a.inv();} mint operator/(const mint& a) const {mint b(*this); return b/=a;} }; istream &operator>>(istream& is, mint& a) {ll t; is>>t; a=t; return is;} ostream &operator<<(ostream& os, const mint& a) {return os<; using mmat = vector; mat matmul(mat A, mat B) { ll N = SZ(A); mat C(N, vec(N, -INF)); REP(i,0,N) { REP(j,0,N) { REP(k,0,N) { if(A[i][k] > -INF && B[k][j] > -INF) chmax(C[i][j], A[i][k]+B[k][j]); } } } return C; } mat matpow(mat A, ll n) { if(n == 0) { ll N = SZ(A); mat I(N, vec(N, -INF)); REP(i,0,N) I[i][i] = 0; return I; } mat T = matpow(A, n>>1); T = matmul(T, T); if(n&1) T = matmul(T, A); return T; } int main() { ll M = 26; vec C(M), K(M); REP(i,0,M) cin >> C[i], --C[i]; REP(i,0,M) cin >> K[i]; ll N; cin >> N; vector S(N); vec A(N), B(N), E(N); REP(i,0,N) { cin >> S[i] >> A[i] >> B[i] >> E[i]; --A[i]; --B[i]; } ll L = 16; vector D(M, mat(L, vec(L, -INF))); REP(i,0,M) { REP(j,0,L) D[i][j][j] = 0; } REP(i,0,N) { FORE(c,S[i]) { chmax(D[c-'A'][A[i]][B[i]], E[i]); chmax(D[c-'A'][B[i]][A[i]], E[i]); } } REP(i,0,M) D[i] = matpow(D[i], K[i]); ll ans = -INF; REP(i,0,L) { ll sum = 0; REP(j,0,M) { ll tmp = D[j][C[j]][i]; if(tmp > -INF) sum += tmp; else { sum = -INF; break; } } if(sum > -INF) chmax(ans, sum); } if(ans > -INF) PR(ans); else PR("Impossible"); return 0; } /* */