#pragma GCC optimization ("O3") #include using namespace std; using ll = long long; using vec = vector; using mat = vector; using pll = pair; #define INF (1LL<<61) #define MOD 1000000007LL //#define MOD 998244353LL #define EPS (1e-10) #define PR(x) cout << (x) << endl #define PS(x) cout << (x) << " " #define REP(i,m,n) for(ll (i)=(m),(i_len)=(n);(i)<(i_len);++(i)) #define FORE(i,v) for(auto (i):v) #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((ll)(x).size()) #define REV(x) reverse(ALL((x))) #define ASC(x) sort(ALL((x))) #define DESC(x) {ASC((x)); REV((x));} #define BIT(s,i) (((s)>>(i))&1) #define pb push_back #define fi first #define se second template inline int chmin(T& a, T b) {if(a>b) {a=b; return 1;} return 0;} template inline int chmax(T& a, T b) {if(a=MOD) x-=MOD; return *this;} mint& operator-=(const mint& a) {if((x+=MOD-a.x)>=MOD) x-=MOD; return *this;} mint& operator*=(const mint& a) {(x*=a.x)%=MOD; return *this;} mint operator+(const mint& a) const {mint b(*this); return b+=a;} mint operator-(const mint& a) const {mint b(*this); return b-=a;} mint operator*(const mint& a) const {mint b(*this); return b*=a;} mint pow(ll t) const {if(!t) return 1; mint a=pow(t>>1); return (t&1?*this*a:a)*a;} mint inv() const {return pow(MOD-2);} mint& operator/=(const mint& a) {return *this*=a.inv();} mint operator/(const mint& a) const {mint b(*this); return b/=a;} }; istream &operator>>(istream& is, mint& a) {ll t; is>>t; a=t; return is;} ostream &operator<<(ostream& os, const mint& a) {return os<; using mmat = vector; mat matmul(mat A, mat B) { ll N = SZ(A); mat C(N, vec(N, 0)); REP(i,0,N) { REP(j,0,N) { REP(k,0,N) C[i][j] |= A[i][k]&B[k][j]; } } return C; } mat matpow(mat A, ll n) { if(n == 0) { ll N = SZ(A); mat I(N, vec(N, 0)); REP(i,0,N) I[i][i] = 1; return I; } mat T = matpow(A, n>>1); T = matmul(T, T); if(n&1) T = matmul(T, A); return T; } int main() { ll N, M, T; cin >> N >> M >> T; mat A(N+1, vec(N+1)); REP(i,0,M) { ll a, b; cin >> a >> b; A[a][b] = 1; } REP(i,0,N) { bool f = false; REP(j,0,N) f |= A[i][j]; A[i][N] = f^1; } ll ans = 0; A = matpow(A, T); REP(i,0,N) ans += A[0][i]; PR(ans); return 0; } /* */