#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define endl "\n" #define ll long long #define bl bool #define ch char #define vec vector #define vll vector #define sll set #define pll pair #define mkp make_pair #define mll map #define puf push_front #define pub push_back #define pof pop_front() #define pob pop_back() #define em empty() #define fi first #define se second #define fr front() #define ba back() #define be begin() #define rbe rbegin() #define en end() #define ren rend() #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define fo(i,x,y) for(ll i=x;i<=y;++i) #define fa(i,v) for(auto &i:v) #define re return #define rz return 0; #define sz size() #define len length() #define con continue; #define br break; #define ma(a,x) a=max(a,x) #define mi(a,x) a=min(a,x) #define so(v) sort(all(v)) #define rso(v) sort(rall(v)) #define rev(v) reverse(all(v)) #define i(x) for(ll i=0;i void ff(T a,A... b){ cout< void cc(T a,A... b){ cout< void cl(T a,A... b){ cout< void cn(T a,A... b){ cout< void ci(A&... a){ (cin>>...>>a); }; templatevoid ou(T v){fa(i,v)cout<void oun(T v){fa(i,v)cout<void ouu(T v){fa(i,v){fa(j,i)cout< void oul(T v){fa(i,v)cout<void in(T &v){fa(i,v)cin>>i;} templatevoid inn(T &v){fa(i,v)fa(j,i)cin>>j;} templatevoid oump(T &v){fa(i,v)ff(i.fi,i.se);} templatevoid pi(pair &p){ci(p.fi,p.se);} templatevoid po(pair &p){ff(p.fi,p.se);} void init(){ ios::sync_with_stdio(false); cin.tie(0); } void solve(); void ori(); ll ck(){ std::random_device seed_gen; std::mt19937 engine(seed_gen()); // [-1.0, 1.0)の値の範囲で、等確率に実数を生成する std::uniform_real_distribution<> dist1(1.0, 100000); i(10000){ // 各分布法に基いて乱数を生成 ll n = dist1(engine); } rz; } bl isup(ch c){ re 'A'<=c&&c<='Z'; } bl islo(ch c){ re 'a'<=c&&c<='z'; } //isdigit mll pr_fa(ll x){ mll mp; for(ll i=2;i*i<=x;++i){ while(x%i==0){ ++mp[i]; x/=i; } } if(x!=1) ++mp[x]; re mp; } ch up(ch a){ re toupper(a); } ch low(ch a){ re tolower(a); } #define str(x) to_string(x) #define acc(v) accumulate(v.begin(),v.end(),0LL) #define acci(v,i) accumulate(v.begin(),v.begin()+i,0LL) #define dq deque int main(){ init(); solve(); rz; } template class pnt{ public: T x,y; pnt(T x=0,T y=0):x(x),y(y){} pnt operator + (const pnt r)const { return pnt(x+r.x,y+r.y);} pnt operator - (const pnt r)const { return pnt(x-r.x,y-r.y);} pnt operator * (const pnt r)const { return pnt(x*r.x,y*r.y);} pnt operator / (const pnt r)const { return pnt(x/r.x,y/r.y);} pnt &operator += (const pnt r){ x+=r.x;y+=r.y;return *this;} pnt &operator -= (const pnt r){ x-=r.x;y-=r.y;return *this;} pnt &operator *= (const pnt r){ x*=r.x;y*=r.y;return *this;} pnt &operator /= (const pnt r){ x/=r.x;y/=r.y;return *this;} ll dist(const pnt r){ re (x-r.x)*(x-r.x)+(y-r.y)*(y-r.y); } pnt rot(const dou theta){ T xx,yy; xx=cos(theta)*x-sin(theta)*y; yy=sin(theta)*x+cos(theta)*y; return pnt(xx,yy); } }; istream &operator >> (istream &is,pnt &r){is>>r.x>>r.y;return is;} ostream &operator << (ostream &os,pnt &r){os<>= 1) if (b & 1) res = res * a % mod; return res; } class mint { public: ll a; mint(ll x=0):a(x%MOD){} mint operator + (const mint rhs) const { return mint(*this) += rhs; } mint operator - (const mint rhs) const { return mint(*this) -= rhs; } mint operator * (const mint rhs) const { return mint(*this) *= rhs; } mint operator / (const mint rhs) const { return mint(*this) /= rhs; } mint &operator += (const mint rhs) { a += rhs.a; if (a >= MOD) a -= MOD; return *this; } mint &operator -= (const mint rhs) { if (a < rhs.a) a += MOD; a -= rhs.a; return *this; } mint &operator *= (const mint rhs) { a = a * rhs.a % MOD; return *this; } mint &operator /= (mint rhs) { ll exp = MOD - 2; while (exp) { if (exp % 2) *this *= rhs; rhs *= rhs; exp /= 2; } return *this; } bool operator > (const mint& rhs)const{ return (this->a>rhs.a); } bool operator < (const mint& rhs)const{ return (this->a= (const mint& rhs)const{ return (this->a>=rhs.a); } bool operator <= (const mint& rhs)const{ return (this->a<=rhs.a);} bool operator == (const mint& rhs)const{ return (this->a==rhs.a);} }; istream& operator>>(istream& is, mint& r) { is>>r.a;return is;} ostream& operator<<(ostream& os, const mint& r) { os< #define top top() ll sumw(ll v,ll r){ re (v==0?0:sumw(v/10,r)*r+v%10); } #define com complex struct UFS{ map par;maprk,siz; st root(st x){ auto it=par.find(x); if(it==par.en){ par[x]=x;siz[x]=1;re x; } if(par[x]==x)return x; else return par[x]=root(par[x]); } bool same(st x,st y){ return root(x)==root(y); } bool unite(st x,st y){ st rx=root(x),ry=root(y); if(rx==ry) return false; if(rk[rx] fact, fact_inv, inv; /* init_nCk :二項係数のための前処理 計算量:O(n) */ vll fact,inv,fact_inv; void init_nCk(int SIZE) { fact.resize(SIZE + 5); fact_inv.resize(SIZE + 5); inv.resize(SIZE + 5); fact[0] = fact[1] = 1; fact_inv[0] = fact_inv[1] = 1; inv[1] = 1; for (int i = 2; i < SIZE + 5; i++) { fact[i] = fact[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; fact_inv[i] = fact_inv[i - 1] * inv[i] % MOD; } } long long nCk(int n, int k) { return fact[n] * (fact_inv[k] * fact_inv[n - k] % MOD) % MOD; } struct UF{ vll par,rk,siz; UF(ll n):par(n+5,-1),rk(n+5,0){ } ll root(ll x){ if(par[x]<0)return x; else return par[x]=root(par[x]); } bool same(ll x,ll y){ return root(x)==root(y); } bool unite(ll x,ll y){ ll rx=root(x),ry=root(y); if(rx==ry) return false; if(rk[rx]. *++ ! /%* +- << < == & && +=?: */ //vll dx={-1,-1,-1,0,0,1,1,1},dy={-1,0,1,-1,1,-1,0,1}; //vll dx={-1,0,0,1},dy={0,-1,1,0}; //#define N 11 #define N 100000 void solve(){ ff(MOD); ge(ll,a,n); ff(mod_pow(a,n)); }