#define PROBLEM "https://yukicoder.me/problems/no/649" #include #include #include #include #include #include #include #include #include namespace suisen::internal::implicit_treap { template struct Node { using random_engine = std::mt19937; static inline random_engine rng{ std::random_device{}() }; using node_type = Derived; using node_pointer = uint32_t; using priority_type = std::invoke_result_t; using size_type = uint32_t; using difference_type = int32_t; using value_type = T; using pointer = value_type*; using const_pointer = const value_type*; using reference = value_type&; using const_reference = const value_type&; static inline std::vector _nodes{}; static inline std::vector _erased{}; static constexpr node_pointer null = ~node_pointer(0); node_pointer _ch[2]{ null, null }; value_type _val; size_type _size; priority_type _priority; bool _rev = false; Node(const value_type val = {}): _val(val), _size(1), _priority(rng()) {} static void reserve(size_type capacity) { _nodes.reserve(capacity); } static node_type& node(node_pointer t) { return _nodes[t]; } static const node_type& const_node(node_pointer t) { return _nodes[t]; } static value_type& value(node_pointer t) { return node(t)._val; } static value_type set_value(node_pointer t, const value_type& new_val) { return std::exchange(value(t), new_val); } static bool empty(node_pointer t) { return t == null; } static size_type& size(node_pointer t) { return node(t)._size; } static size_type safe_size(node_pointer t) { return empty(t) ? 0 : size(t); } static priority_type priority(node_pointer t) { return const_node(t)._priority; } static node_pointer& child0(node_pointer t) { return node(t)._ch[0]; } static node_pointer& child1(node_pointer t) { return node(t)._ch[1]; } static node_pointer child(node_pointer t, bool b) { return node(t)._ch[b]; } static node_pointer set_child0(node_pointer t, node_pointer cid) { return std::exchange(child0(t), cid); } static node_pointer set_child1(node_pointer t, node_pointer cid) { return std::exchange(child1(t), cid); } static bool& reversed(node_pointer t) { return node(t)._rev; } static node_pointer update(node_pointer t) { // t : not null size(t) = safe_size(child0(t)) + safe_size(child1(t)) + 1; return t; } static bool push(node_pointer t) { // t : not null bool rev = t != null and std::exchange(reversed(t), false); if (rev) { reverse_all(child0(t)); reverse_all(child1(t)); } return rev; } static node_pointer empty_node() { return null; } template static node_pointer create_node(Args &&...args) { if (_erased.size()) { node_pointer res = _erased.back(); _erased.pop_back(); node(res) = node_type(std::forward(args)...); return res; } else { node_pointer res = _nodes.size(); _nodes.emplace_back(std::forward(args)...); return res; } } static void delete_node(node_pointer t) { _erased.push_back(t); } static void delete_tree(node_pointer t) { if (t == null) return; delete_tree(child0(t)); delete_tree(child1(t)); delete_node(t); } template static node_pointer build(Args &&... args) { node_pointer res = empty_node(); for (auto&& e : std::vector(std::forward(args)...)) { res = push_back(res, std::move(e)); } return res; } static std::pair split(node_pointer t, size_type k) { if (t == null) { return { null, null }; } node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) { auto [ll, lr] = split(child0(t), k); set_child0(t, lr); return { ll, node_type::update(t) }; } else { auto [rl, rr] = split(child1(t), k - (lsiz + 1)); set_child1(t, rl); return { node_type::update(t), rr }; } } static std::tuple split(node_pointer t, size_type l, size_type r) { auto [tlm, tr] = split(t, r); auto [tl, tm] = split(tlm, l); return { tl, tm, tr }; } // Split immediately before the first element that satisfies the condition. template static std::pair split_binary_search(node_pointer t, const Predicate& f) { if (t == null) { return { null, null }; } node_type::push(t); if (f(value(t))) { auto [ll, lr] = split_binary_search(child0(t), f); set_child0(t, lr); return { ll, node_type::update(t) }; } else { auto [rl, rr] = split_binary_search(child1(t), f); set_child1(t, rl); return { node_type::update(t), rr }; } } template > static std::pair split_lower_bound(node_pointer t, const value_type &target, const Compare &comp) { return split_binary_search(t, [&](const value_type &v) { return not comp(v, target); }); } template > static std::pair split_upper_bound(node_pointer t, const value_type &target, const Compare &comp) { return split_binary_search(t, [&](const value_type &v) { return comp(target, v); }); } static node_pointer merge(node_pointer tl, node_pointer tr) { if (tl == null or tr == null) { return tl ^ tr ^ null; } if (priority(tl) < priority(tr)) { node_type::push(tr); set_child0(tr, merge(tl, child0(tr))); return node_type::update(tr); } else { node_type::push(tl); set_child1(tl, merge(child1(tl), tr)); return node_type::update(tl); } } static node_pointer merge(node_pointer tl, node_pointer tm, node_pointer tr) { return merge(merge(tl, tm), tr); } static node_pointer insert_impl(node_pointer t, size_type k, node_pointer new_node) { if (t == null) { return new_node; } if (priority(new_node) > priority(t)) { auto [tl, tr] = split(t, k); set_child0(new_node, tl); set_child1(new_node, tr); return node_type::update(new_node); } else { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) { set_child0(t, insert_impl(child0(t), k, new_node)); } else { set_child1(t, insert_impl(child1(t), k - (lsiz + 1), new_node)); } return node_type::update(t); } } template static node_pointer insert(node_pointer t, size_type k, Args &&...args) { return insert_impl(t, k, create_node(std::forward(args)...)); } template static node_pointer push_front(node_pointer t, Args &&...args) { return insert(t, 0, std::forward(args)...); } template static node_pointer push_back(node_pointer t, Args &&...args) { return insert(t, safe_size(t), std::forward(args)...); } // Insert a new node immediately before the first element that satisfies the condition. // Returns { node, position to insert } template static std::pair insert_binary_search_impl(node_pointer t, const Predicate& f, node_pointer new_node) { if (t == null) { return { new_node, 0 }; } if (priority(new_node) > priority(t)) { auto [tl, tr] = split_binary_search(t, f); set_child0(new_node, tl); set_child1(new_node, tr); return { node_type::update(new_node), safe_size(tl) }; } else { node_type::push(t); if (f(value(t))) { auto [c0, pos] = insert_binary_search_impl(child0(t), f, new_node); set_child0(t, c0); return { node_type::update(t), pos }; } else { auto [c1, pos] = insert_binary_search_impl(child1(t), f, new_node); set_child1(t, c1); return { node_type::update(t), pos + safe_size(child0(t)) + 1 }; } } } template static std::pair insert_binary_search(node_pointer t, const Predicate& f, Args &&...args) { return insert_binary_search_impl(t, f, create_node(std::forward(args)...)); } template > static std::pair insert_lower_bound(node_pointer t, const value_type& v, Compare comp) { return insert_binary_search(t, [&](const value_type& x) { return not comp(x, v); }, v); } template > static std::pair insert_upper_bound(node_pointer t, const value_type& v, Compare comp) { return insert_binary_search(t, [&](const value_type& x) { return comp(v, x); }, v); } static std::pair erase(node_pointer t, size_type k) { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { delete_node(t); return { merge(child0(t), child1(t)), std::move(value(t)) }; } else if (k < lsiz) { auto [c0, v] = erase(child0(t), k); set_child0(t, c0); return { node_type::update(t), std::move(v) }; } else { auto [c1, v] = erase(child1(t), k - (lsiz + 1)); set_child1(t, c1); return { node_type::update(t), std::move(v) }; } } static std::pair pop_front(node_pointer t) { return erase(t, 0); } static std::pair pop_back(node_pointer t) { return erase(t, safe_size(t) - 1); } // Remove the first element that satisfies the condition f. // returns { node, optional(position, value) } template static std::pair>> erase_binary_search(node_pointer t, const Predicate& f) { if (t == null) return { null, std::nullopt }; node_type::push(t); if (f(value(t))) { auto [c0, erased] = erase_binary_search(child0(t), f); if (erased) { set_child0(t, c0); return { node_type::update(t), std::move(erased) }; } else { delete_node(t); return { merge(child0(t), child1(t)), std::pair{ safe_size(child0(t)), std::move(value(t)) } }; } } else { auto [c1, erased] = erase_binary_search(child1(t), f); if (erased) { set_child1(t, c1); erased->first += safe_size(child0(t)) + 1; return { node_type::update(t), std::move(erased) }; } else { return { t, std::nullopt }; } } } static node_pointer rotate(node_pointer t, size_type k) { auto [tl, tr] = split(t, k); return merge(tr, tl); } static value_type& get(node_pointer t, size_type k) { while (true) { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { return value(t); } else if (k < lsiz) { t = child0(t); } else { k -= lsiz + 1; t = child1(t); } } } template static node_pointer set_update(node_pointer t, size_type k, const Func& f) { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { value_type& val = value(t); val = f(const_cast(val)); } else if (k < lsiz) { set_child0(t, set_update(child0(t), k, f)); } else { set_child1(t, set_update(child1(t), k - (lsiz + 1), f)); } return node_type::update(t); } static node_pointer reverse_all(node_pointer t) { if (t != null) { reversed(t) ^= true; std::swap(child0(t), child1(t)); } return t; } static node_pointer reverse(node_pointer t, size_type l, size_type r) { auto [tl, tm, tr] = split(t, l, r); return merge(tl, Derived::reverse_all(tm), tr); } static std::vector dump(node_pointer t) { std::vector res; res.reserve(safe_size(t)); auto rec = [&](auto rec, node_pointer t) -> void { if (t == null) return; node_type::push(t); rec(rec, child0(t)); res.push_back(value(t)); rec(rec, child1(t)); }; rec(rec, t); return res; } // Find the first element that satisfies the condition f : (value, index) -> { false, true }. // Returns { optional(value), position } template static std::pair> binary_search(node_pointer t, const Predicate& f) { node_pointer res = null; int ng = -1, ok = safe_size(t); while (ok - ng > 1) { node_type::push(t); if (const int root = ng + safe_size(child0(t)) + 1; f(value(t), root)) { res = t; ok = root, t = child0(t); } else { ng = root, t = child1(t); } } if (res == null) { return { ok, std::nullopt }; } else { return { ok, value(res) }; } } // comp(T t, U u) = (t < u) template > static std::pair> lower_bound(node_pointer t, const U& target, Compare comp) { return binary_search(t, [&](const value_type& v, int) { return not comp(v, target); }); } // comp(T u, U t) = (u < t) template > static std::pair> upper_bound(node_pointer t, const U& target, Compare comp) { return binary_search(t, [&](const value_type& v, int) { return comp(target, v); }); } template struct NodeIterator { static constexpr bool constant = constant_; static constexpr bool reversed = reversed_; using difference_type = Node::difference_type; using value_type = Node::value_type; using pointer = std::conditional_t; using reference = std::conditional_t; using iterator_cateogory = std::random_access_iterator_tag; NodeIterator(): root(null), index(0) {} NodeIterator(node_pointer root, size_type index): root(root), index(index) {} reference operator*() const { return value(stk.back()); } reference operator[](difference_type k) const { return *((*this) + k); } NodeIterator& operator++() { return *this += 1; } NodeIterator& operator--() { return *this -= 1; } NodeIterator& operator+=(difference_type k) { return suc(+k), * this; } NodeIterator& operator-=(difference_type k) { return suc(-k), * this; } NodeIterator operator++(int) { NodeIterator res = *this; ++(*this); return res; } NodeIterator operator--(int) { NodeIterator res = *this; --(*this); return res; } friend NodeIterator operator+(NodeIterator it, difference_type k) { return it += k; } friend NodeIterator operator+(difference_type k, NodeIterator it) { return it += k; } friend NodeIterator operator-(NodeIterator it, difference_type k) { return it -= k; } friend difference_type operator-(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index - rhs.index; } friend bool operator==(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index == rhs.index; } friend bool operator!=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index != rhs.index; } friend bool operator<(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index < rhs.index; } friend bool operator>(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index > rhs.index; } friend bool operator<=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index <= rhs.index; } friend bool operator>=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index >= rhs.index; } static NodeIterator kth_iter(node_pointer t, size_type k) { NodeIterator it(t, k); if (k == safe_size(t)) return it; auto& stk = it.stk; while (t != null) { node_type::push(t); stk.push_back(t); if (size_type siz = safe_size(child(t, reversed)); k == siz) { break; } else if (k < siz) { t = child(t, reversed); } else { k -= siz + 1; t = child(t, not reversed); } } return it; } private: node_pointer root; size_type index; std::vector stk; void up(const bool positive) { node_pointer t = stk.back(); do { stk.pop_back(); if (stk.empty() or t == child(stk.back(), not positive)) break; t = stk.back(); } while (stk.size()); } void down(node_pointer t, size_type k, const bool positive) { while (true) { node_type::push(t); stk.push_back(t); if (size_type siz = safe_size(child(t, not positive)); k == siz) { break; } else if (k < siz) { t = child(t, not positive); } else { k -= siz + 1; t = child(t, positive); } } } void suc(difference_type k) { index += k; const bool positive = k < 0 ? (k = -k, reversed) : not reversed; if (k and stk.empty()) { for (node_pointer t = root; t != null; t = child(t, not positive)) { node_type::push(t); stk.push_back(t); } --k; } while (k) { node_pointer t = child(stk.back(), positive); if (difference_type siz = safe_size(t); k > siz) { up(positive); k -= siz + 1; } else { down(t, k - 1, positive); break; } } } }; using iterator = NodeIterator; using reverse_iterator = NodeIterator; using const_iterator = NodeIterator; using const_reverse_iterator = NodeIterator; static iterator begin(node_pointer t) { return ++iterator(t, -1); } static iterator end(node_pointer t) { return iterator(t, safe_size(t)); } static iterator kth_iterator(node_pointer t, size_type k) { return iterator::kth_iter(t, k); } static reverse_iterator rbegin(node_pointer t) { return ++reverse_iterator(t, -1); } static reverse_iterator rend(node_pointer t) { return reverse_iterator(t, safe_size(t)); } static reverse_iterator kth_reverse_iterator(node_pointer t, size_type k) { return reverse_iterator::kth_iter(t, k); } static const_iterator cbegin(node_pointer t) { return ++const_iterator(t, -1); } static const_iterator cend(node_pointer t) { return const_iterator(t, safe_size(t)); } static const_iterator kth_const_iterator(node_pointer t, size_type k) { return const_iterator::kth_iter(t, k); } static const_reverse_iterator crbegin(node_pointer t) { return ++const_reverse_iterator(t, -1); } static const_reverse_iterator crend(node_pointer t) { return const_reverse_iterator(t, safe_size(t)); } static const_reverse_iterator kth_const_reverse_iterator(node_pointer t, size_type k) { return const_reverse_iterator::kth_iter(t, k); } }; } // namespace suisen::internal::implicit_treap namespace suisen { namespace internal::implicit_treap { template struct DefaultNode: Node> { using base = Node>; using base::base; }; } template class DynamicArray { using node_type = internal::implicit_treap::DefaultNode; using node_pointer = typename node_type::node_pointer; node_pointer _root; struct node_pointer_construct {}; DynamicArray(node_pointer root, node_pointer_construct): _root(root) {} public: using value_type = typename node_type::value_type; DynamicArray(): _root(node_type::empty_node()) {} explicit DynamicArray(size_t n, const value_type& fill_value = {}): _root(node_type::build(n, fill_value)) {} template DynamicArray(const std::vector& dat) : _root(node_type::build(dat.begin(), dat.end())) {} void free() { node_type::delete_tree(_root); _root = node_type::empty_node(); } void clear() { free(); } static void reserve(size_t capacity) { node_type::reserve(capacity); } bool empty() const { return node_type::empty(_root); } int size() const { return node_type::safe_size(_root); } value_type& operator[](size_t k) { assert(k < size_t(size())); return node_type::get(_root, k); } const value_type& operator[](size_t k) const { assert(k < size_t(size())); return node_type::get(_root, k); } value_type& front() { return (*this)[0]; } value_type& back() { return (*this)[size() - 1]; } const value_type& front() const { return (*this)[0]; } const value_type& back() const { return (*this)[size() - 1]; } void insert(size_t k, const value_type& val) { assert(k <= size_t(size())); _root = node_type::insert(_root, k, val); } void push_front(const value_type& val) { _root = node_type::push_front(_root, val); } void push_back(const value_type& val) { _root = node_type::push_back(_root, val); } template int insert_binary_search(const value_type& val, const Predicate &f) { int pos; std::tie(_root, pos) = node_type::insert_binary_search(_root, f, val); return pos; } template > int insert_lower_bound(const value_type& val, const Compare &comp = {}) { int pos; std::tie(_root, pos) = node_type::insert_lower_bound(_root, val, comp); return pos; } template > int insert_upper_bound(const value_type& val, const Compare &comp = {}) { int pos; std::tie(_root, pos) = node_type::insert_upper_bound(_root, val, comp); return pos; } value_type erase(size_t k) { assert(k <= size_t(size())); value_type v; std::tie(_root, v) = node_type::erase(_root, k); return v; } value_type pop_front() { return erase(0); } value_type pop_back() { return erase(size() - 1); } template std::optional> erase_binary_search(const Predicate &f) { auto [root, erased] = node_type::erase_binary_search(_root, f); _root = root; if (erased) { return std::pair{ erased->first, erased->second }; } else { return std::nullopt; } } DynamicArray split(size_t k) { assert(k <= size_t(size())); node_pointer root_r; std::tie(_root, root_r) = node_type::split(_root, k); return DynamicArray(root_r, node_pointer_construct{}); } template DynamicArray split_binary_search(const Predicate &f) { node_pointer root_r; std::tie(_root, root_r) = node_type::split_binary_search(_root, f); return DynamicArray(root_r, node_pointer_construct{}); } template > DynamicArray split_lower_bound(const value_type &val, const Compare &comp = {}) { node_pointer root_r; std::tie(_root, root_r) = node_type::split_lower_bound(_root, val, comp); return DynamicArray(root_r, node_pointer_construct{}); } template > DynamicArray split_upper_bound(const value_type &val, const Compare &comp = {}) { node_pointer root_r; std::tie(_root, root_r) = node_type::split_upper_bound(_root, val, comp); return DynamicArray(root_r, node_pointer_construct{}); } void merge(DynamicArray r) { _root = node_type::merge(_root, r._root); } void rotate(size_t k) { assert(k <= size_t(size())); _root = node_type::rotate(_root, k); } void reverse(size_t l, size_t r) { assert(l <= r and r <= size_t(size())); if (r - l >= 2) _root = node_type::reverse(_root, l, r); } void reverse_all() { _root = node_type::reverse_all(_root); } std::vector dump() const { return node_type::dump(_root); } // Find the first element that satisfies the condition f. // Returns { position, optional(value) } template std::pair> binary_search(const Predicate& f) const { auto [pos, val] = node_type::binary_search(_root, f); return { pos, std::move(val) }; } // comp(T t, U u) = (t < u) template > std::pair> lower_bound(const U& target, Compare comp = {}) const { auto [pos, val] = node_type::lower_bound(_root, target, comp); return { pos, std::move(val) }; } // comp(T u, U t) = (u < t) template > std::pair> upper_bound(const U& target, Compare comp = {}) const { auto [pos, val] = node_type::upper_bound(_root, target, comp); return { pos, std::move(val) }; } using iterator = typename node_type::iterator; using reverse_iterator = typename node_type::reverse_iterator; using const_iterator = typename node_type::const_iterator; using const_reverse_iterator = typename node_type::const_reverse_iterator; iterator begin() { return node_type::begin(_root); } iterator end() { return node_type::end(_root); } iterator kth_iterator(size_t k) { return node_type::kth_iterator(_root, k); } reverse_iterator rbegin() { return node_type::rbegin(_root); } reverse_iterator rend() { return node_type::rend(_root); } reverse_iterator kth_reverse_iterator(size_t k) { return node_type::kth_reverse_iterator(_root, k); } const_iterator begin() const { return cbegin(); } const_iterator end() const { return cend(); } const_iterator kth_iterator(size_t k) const { return kth_const_iterator(k); } const_reverse_iterator rbegin() const { return crbegin(); } const_reverse_iterator rend() const { return crend(); } const_reverse_iterator kth_reverse_iterator(size_t k) const { return kth_const_reverse_iterator(k); } const_iterator cbegin() const { return node_type::cbegin(_root); } const_iterator cend() const { return node_type::cend(_root); } const_iterator kth_const_iterator(size_t k) const { return node_type::kth_const_iterator(_root, k); } const_reverse_iterator crbegin() const { return node_type::crbegin(_root); } const_reverse_iterator crend() const { return node_type::crend(_root); } const_reverse_iterator kth_const_reverse_iterator(size_t k) const { return node_type::kth_const_reverse_iterator(_root, k); } }; } // namespace suisen int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int q, k; std::cin >> q >> k; using suisen::DynamicArray; DynamicArray a; while (q-- > 0) { int t; std::cin >> t; if (t == 1) { long long v; std::cin >> v; a.insert_lower_bound(v); } else { if (a.size() < k) { std::cout << -1 << '\n'; } else { std::cout << a.erase(k - 1) << '\n'; } } } }