#define PROBLEM "https://yukicoder.me/problems/no/649" #include #include #include #include #include #include #include #include #include namespace suisen::internal::implicit_treap { template struct Node { using random_engine = std::mt19937; static inline random_engine rng{ std::random_device{}() }; using node_type = Derived; using node_pointer = uint32_t; using priority_type = std::invoke_result_t; using size_type = uint32_t; using difference_type = int32_t; using value_type = T; using pointer = value_type*; using const_pointer = const value_type*; using reference = value_type&; using const_reference = const value_type&; static inline std::vector _nodes{}; static inline std::vector _erased{}; static constexpr node_pointer null = ~node_pointer(0); node_pointer _ch[2]{ null, null }; value_type _val; size_type _size; priority_type _priority; node_pointer _prev = null, _next = null; Node(const value_type val = {}): _val(val), _size(1), _priority(rng()) {} static void reserve(size_type capacity) { _nodes.reserve(capacity); } static bool is_null(node_pointer t) { return t == null; } static bool is_not_null(node_pointer t) { return not is_null(t); } static node_type& node(node_pointer t) { return _nodes[t]; } static const node_type& const_node(node_pointer t) { return _nodes[t]; } static value_type& value(node_pointer t) { return node(t)._val; } static value_type set_value(node_pointer t, const value_type& new_val) { return std::exchange(value(t), new_val); } static bool empty(node_pointer t) { return is_null(t); } static size_type& size(node_pointer t) { return node(t)._size; } static size_type safe_size(node_pointer t) { return empty(t) ? 0 : size(t); } static priority_type priority(node_pointer t) { return const_node(t)._priority; } static node_pointer& prev(node_pointer t) { return node(t)._prev; } static node_pointer& next(node_pointer t) { return node(t)._next; } static void link(node_pointer l, node_pointer r) { next(l) = r, prev(r) = l; } static node_pointer min(node_pointer t) { while (true) { node_type::push(t); node_pointer nt = child0(t); if (is_null(nt)) return t; t = nt; } } static node_pointer max(node_pointer t) { while (true) { node_type::push(t); node_pointer nt = child1(t); if (is_null(nt)) return t; t = nt; } } static node_pointer& child0(node_pointer t) { return node(t)._ch[0]; } static node_pointer& child1(node_pointer t) { return node(t)._ch[1]; } static node_pointer& child(node_pointer t, bool b) { return node(t)._ch[b]; } static node_pointer set_child0(node_pointer t, node_pointer cid) { return std::exchange(child0(t), cid); } static node_pointer set_child1(node_pointer t, node_pointer cid) { return std::exchange(child1(t), cid); } static node_pointer set_child(node_pointer t, bool b, node_pointer cid) { return std::exchange(child(t, b), cid); } static node_pointer update(node_pointer t) { // t : not null size(t) = safe_size(child0(t)) + safe_size(child1(t)) + 1; return t; } static void push(node_pointer) {} static node_pointer empty_node() { return null; } template static node_pointer create_node(Args &&...args) { if (_erased.size()) { node_pointer res = _erased.back(); _erased.pop_back(); node(res) = node_type(std::forward(args)...); return res; } else { node_pointer res = _nodes.size(); _nodes.emplace_back(std::forward(args)...); return res; } } static void delete_node(node_pointer t) { _erased.push_back(t); } static void delete_tree(node_pointer t) { if (is_null(t)) return; delete_tree(child0(t)); delete_tree(child1(t)); delete_node(t); } template static node_pointer build(Args &&... args) { node_pointer res = empty_node(); for (auto&& e : std::vector(std::forward(args)...)) { res = push_back(res, std::move(e)); } return res; } static std::pair split(node_pointer t, size_type k) { if (k == 0) return { null, t }; if (k == size(t)) return { t, null }; static std::vector lp{}, rp{}; while (true) { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) { if (rp.size()) set_child0(rp.back(), t); rp.push_back(t); if (k == lsiz) { if (lp.size()) set_child1(lp.back(), child0(t)); node_pointer lt = set_child0(t, null), rt = null; while (lp.size()) node_type::update(lt = lp.back()), lp.pop_back(); while (rp.size()) node_type::update(rt = rp.back()), rp.pop_back(); return { lt, rt }; } t = child0(t); } else { if (lp.size()) set_child1(lp.back(), t); lp.push_back(t); t = child1(t); k -= lsiz + 1; } } } static std::tuple split(node_pointer t, size_type l, size_type r) { auto [tlm, tr] = split(t, r); auto [tl, tm] = split(tlm, l); return { tl, tm, tr }; } static node_pointer merge_impl(node_pointer tl, node_pointer tr) { if (priority(tl) < priority(tr)) { node_type::push(tr); if (node_pointer tm = child0(tr); is_null(tm)) { link(max(tl), tr); set_child0(tr, tl); } else { set_child0(tr, merge(tl, tm)); } return node_type::update(tr); } else { node_type::push(tl); if (node_pointer tm = child1(tl); is_null(tm)) { link(tl, min(tr)); set_child1(tl, tr); } else { set_child1(tl, merge(tm, tr)); } return node_type::update(tl); } } static node_pointer merge(node_pointer tl, node_pointer tr) { if (is_null(tl)) return tr; if (is_null(tr)) return tl; return merge_impl(tl, tr); } static node_pointer merge(node_pointer tl, node_pointer tm, node_pointer tr) { return merge(merge(tl, tm), tr); } static node_pointer insert_impl(node_pointer t, size_type k, node_pointer new_node) { if (is_null(t)) return new_node; static std::vector st; bool b = false; while (true) { if (is_null(t) or priority(new_node) > priority(t)) { if (is_null(t)) { t = new_node; } else { auto [tl, tr] = split(t, k); if (is_not_null(tl)) link(max(tl), new_node); if (is_not_null(tr)) link(new_node, min(tr)); set_child0(new_node, tl); set_child1(new_node, tr); t = node_type::update(new_node); } if (st.size()) { set_child(st.back(), b, t); do t = node_type::update(st.back()), st.pop_back(); while (st.size()); } return t; } else { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) { if (k == lsiz) link(new_node, t); st.push_back(t), b = false; t = child0(t); } else { if (k == lsiz + 1) link(t, new_node); st.push_back(t), b = true; t = child1(t); k -= lsiz + 1; } } } } template static node_pointer insert(node_pointer t, size_type k, Args &&...args) { return insert_impl(t, k, create_node(std::forward(args)...)); } template static node_pointer push_front(node_pointer t, Args &&...args) { return insert(t, 0, std::forward(args)...); } template static node_pointer push_back(node_pointer t, Args &&...args) { return insert(t, safe_size(t), std::forward(args)...); } static std::pair erase(node_pointer t, size_type k) { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { delete_node(t); return { merge(child0(t), child1(t)), std::move(value(t)) }; } else if (k < lsiz) { auto [c0, v] = erase(child0(t), k); set_child0(t, c0); if (is_not_null(c0) and k == lsiz - 1) link(max(c0), t); return { node_type::update(t), std::move(v) }; } else { auto [c1, v] = erase(child1(t), k - (lsiz + 1)); set_child1(t, c1); if (is_not_null(c1) and k == lsiz + 1) link(t, min(c1)); return { node_type::update(t), std::move(v) }; } } static std::pair pop_front(node_pointer t) { return erase(t, 0); } static std::pair pop_back(node_pointer t) { return erase(t, safe_size(t) - 1); } static node_pointer rotate(node_pointer t, size_type k) { auto [tl, tr] = split(t, k); return merge(tr, tl); } static node_pointer rotate(node_pointer t, size_type l, size_type m, size_type r) { auto [tl, tm, tr] = split(t, l, r); return merge(tl, rotate(tm, m - l), tr); } static value_type& get(node_pointer t, size_type k) { while (true) { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { return value(t); } else if (k < lsiz) { t = child0(t); } else { k -= lsiz + 1; t = child1(t); } } } template static node_pointer set_update(node_pointer t, size_type k, const Func& f) { node_type::push(t); if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { value_type& val = value(t); val = f(const_cast(val)); } else if (k < lsiz) { set_child0(t, set_update(child0(t), k, f)); } else { set_child1(t, set_update(child1(t), k - (lsiz + 1), f)); } return node_type::update(t); } static std::vector dump(node_pointer t) { std::vector res; res.reserve(safe_size(t)); auto rec = [&](auto rec, node_pointer t) -> void { if (is_null(t)) return; node_type::push(t); rec(rec, child0(t)); res.push_back(value(t)); rec(rec, child1(t)); }; rec(rec, t); return res; } template struct NodeIterator { static constexpr bool constant = constant_; static constexpr bool reversed = reversed_; friend Node; friend NodeIterator; friend NodeIterator; friend NodeIterator; friend NodeIterator; using difference_type = Node::difference_type; using value_type = Node::value_type; using pointer = std::conditional_t; using reference = std::conditional_t; using iterator_cateogory = std::random_access_iterator_tag; NodeIterator(node_pointer root = null): NodeIterator(root, ~size_type(0)) {} reference operator*() { if (is_null(cur) and index != safe_size(root)) { cur = root; for (size_type k = index;;) { node_type::push(cur); if (size_type siz = safe_size(child(cur, reversed)); k == siz) { break; } else if (k < siz) { cur = child(cur, reversed); } else { cur = child(cur, not reversed); k -= siz + 1; } } } return value(cur); } reference operator[](difference_type k) const { return *((*this) + k); } NodeIterator& operator++() { return *this += 1; } NodeIterator& operator--() { return *this -= 1; } NodeIterator& operator+=(difference_type k) { return suc(+k), * this; } NodeIterator& operator-=(difference_type k) { return suc(-k), * this; } NodeIterator operator++(int) { NodeIterator res = *this; ++(*this); return res; } NodeIterator operator--(int) { NodeIterator res = *this; --(*this); return res; } friend NodeIterator operator+(NodeIterator it, difference_type k) { return it += k; } friend NodeIterator operator+(difference_type k, NodeIterator it) { return it += k; } friend NodeIterator operator-(NodeIterator it, difference_type k) { return it -= k; } friend difference_type operator-(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index - rhs.index; } friend bool operator==(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index == rhs.index; } friend bool operator!=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index != rhs.index; } friend bool operator<(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index < rhs.index; } friend bool operator>(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index > rhs.index; } friend bool operator<=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index <= rhs.index; } friend bool operator>=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs.index >= rhs.index; } static NodeIterator begin(node_pointer root) { return NodeIterator(root, 0); } static NodeIterator end(node_pointer root) { return NodeIterator(root, safe_size(root)); } int get_index() const { return index; } int size() const { return safe_size(root); } NodeIterator remove_const() const { return NodeIterator(root, index, cur); } private: node_pointer root; size_type index; node_pointer cur = null; // it==end() or uninitialized (updates only index) NodeIterator(node_pointer root, size_type index, node_pointer cur = null): root(root), index(index), cur(cur) {} void suc(difference_type k) { index += k; if (index == safe_size(root) or std::abs(k) >= 10) cur = null; if (is_null(cur)) return; const bool positive = k < 0 ? (k = -k, reversed) : not reversed; if (positive) { while (k-- > 0) cur = next(cur); } else { while (k-- > 0) cur = prev(cur); } } node_pointer get_root() const { return root; } node_pointer node() const { return cur; } bool is_default() const { return index == ~size_type(0); } void init_binary_search() { cur = root; node_type::push(cur); index = safe_size(child0(cur)); } void go_left() { cur = child0(cur); index -= is_null(cur) ? 1 : safe_size(child1(cur)) + 1; } void go_right() { cur = child1(cur); index += is_null(cur) ? 1 : safe_size(child0(cur)) + 1; } }; using iterator = NodeIterator; using reverse_iterator = NodeIterator; using const_iterator = NodeIterator; using const_reverse_iterator = NodeIterator; static iterator begin(node_pointer t) { return iterator::begin(t); } static iterator end(node_pointer t) { return iterator::end(t); } static reverse_iterator rbegin(node_pointer t) { return reverse_iterator::begin(t); } static reverse_iterator rend(node_pointer t) { return reverse_iterator::end(t); } static const_iterator cbegin(node_pointer t) { return const_iterator::begin(t); } static const_iterator cend(node_pointer t) { return const_iterator::end(t); } static const_reverse_iterator crbegin(node_pointer t) { return const_reverse_iterator::begin(t); } static const_reverse_iterator crend(node_pointer t) { return const_reverse_iterator::end(t); } // Find the first element that satisfies the condition f : const_iterator -> { false, true }. // Returns const_iterator template static const_iterator binary_search(node_pointer t, const Predicate& f) { if (is_null(t)) return cend(t); const_iterator it(t), res = cend(t); it.init_binary_search(); while (is_not_null(it.node())) { node_type::push(it.node()); if (f(it)) { res = it; it.go_left(); } else { it.go_right(); } } return res; } // comp(T t, U u) = (t < u) template > static const_iterator lower_bound(node_pointer t, const U& target, Compare comp) { return binary_search(t, [&](const_iterator it) { return not comp(*it, target); }); } // comp(T u, U t) = (u < t) template > static const_iterator upper_bound(node_pointer t, const U& target, Compare comp) { return binary_search(t, [&](const_iterator it) { return comp(target, *it); }); } static node_pointer insert(const_iterator it, const value_type &val) { return insert(it.root, it.index, val); } static std::pair erase(const_iterator it) { return erase(it.root, it.index); } static std::pair split(const_iterator it) { return split(it.root, it.index); } }; } // namespace suisen::internal::implicit_treap namespace suisen { namespace internal::implicit_treap { template struct DefaultNode: Node> { using base = Node>; using base::base; }; } template class DynamicArray { using node_type = internal::implicit_treap::DefaultNode; using node_pointer = typename node_type::node_pointer; node_pointer _root; struct node_pointer_construct {}; DynamicArray(node_pointer root, node_pointer_construct): _root(root) {} public: using value_type = typename node_type::value_type; DynamicArray(): _root(node_type::empty_node()) {} explicit DynamicArray(size_t n, const value_type& fill_value = {}): _root(node_type::build(n, fill_value)) {} template DynamicArray(const std::vector& dat) : _root(node_type::build(dat.begin(), dat.end())) {} void free() { node_type::delete_tree(_root); _root = node_type::empty_node(); } void clear() { free(); } static void reserve(size_t capacity) { node_type::reserve(capacity); } bool empty() const { return node_type::empty(_root); } int size() const { return node_type::safe_size(_root); } value_type& operator[](size_t k) { assert(k < size_t(size())); return node_type::get(_root, k); } const value_type& operator[](size_t k) const { assert(k < size_t(size())); return node_type::get(_root, k); } value_type& front() { return (*this)[0]; } value_type& back() { return (*this)[size() - 1]; } const value_type& front() const { return (*this)[0]; } const value_type& back() const { return (*this)[size() - 1]; } void insert(size_t k, const value_type& val) { assert(k <= size_t(size())); _root = node_type::insert(_root, k, val); } void push_front(const value_type& val) { _root = node_type::push_front(_root, val); } void push_back(const value_type& val) { _root = node_type::push_back(_root, val); } value_type erase(size_t k) { assert(k <= size_t(size())); value_type v; std::tie(_root, v) = node_type::erase(_root, k); return v; } value_type pop_front() { return erase(0); } value_type pop_back() { return erase(size() - 1); } // Split immediately before the k-th element. DynamicArray split(size_t k) { assert(k <= size_t(size())); node_pointer root_r; std::tie(_root, root_r) = node_type::split(_root, k); return DynamicArray(root_r, node_pointer_construct{}); } void merge(DynamicArray r) { _root = node_type::merge(_root, r._root); } void rotate(size_t k) { assert(k <= size_t(size())); _root = node_type::rotate(_root, k); } void rotate(size_t l, size_t m, size_t r) { assert(l <= m and m <= r and r <= size_t(size())); _root = node_type::rotate(_root, l, m, r); } std::vector dump() const { return node_type::dump(_root); } using iterator = typename node_type::iterator; using reverse_iterator = typename node_type::reverse_iterator; using const_iterator = typename node_type::const_iterator; using const_reverse_iterator = typename node_type::const_reverse_iterator; iterator begin() { return node_type::begin(_root); } iterator end() { return node_type::end(_root); } reverse_iterator rbegin() { return node_type::rbegin(_root); } reverse_iterator rend() { return node_type::rend(_root); } const_iterator begin() const { return cbegin(); } const_iterator end() const { return cend(); } const_reverse_iterator rbegin() const { return crbegin(); } const_reverse_iterator rend() const { return crend(); } const_iterator cbegin() const { return node_type::cbegin(_root); } const_iterator cend() const { return node_type::cend(_root); } const_reverse_iterator crbegin() const { return node_type::crbegin(_root); } const_reverse_iterator crend() const { return node_type::crend(_root); } // Find the first element that satisfies the condition f. // Returns { position, optional(value) } // Requirements: f(A[i]) must be monotonic template const_iterator binary_search(const Predicate& f) { return node_type::binary_search(_root, f); } // comp(T t, U u) = (t < u) // Requirements: sequence is sorted template > const_iterator lower_bound(const U& target, Compare comp = {}) const { return node_type::lower_bound(_root, target, comp); } // comp(T u, U t) = (u < t) // Requirements: sequence is sorted template > const_iterator upper_bound(const U& target, Compare comp = {}) const { return node_type::upper_bound(_root, target, comp); } void insert(const_iterator it, const value_type &val) { _root = node_type::insert(it, val); } value_type erase(const_iterator it) { value_type erased; std::tie(_root, erased) = node_type::erase(it); return erased; } DynamicArray split(const_iterator it) { node_pointer root_r; std::tie(_root, root_r) = node_type::split(it); return DynamicArray(root_r, node_pointer_construct{}); } }; } // namespace suisen int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int q, k; std::cin >> q >> k; using suisen::DynamicArray; DynamicArray a; while (q-- > 0) { int t; std::cin >> t; if (t == 1) { long long v; std::cin >> v; a.insert(a.lower_bound(v), v); } else { if (a.size() < k) { std::cout << -1 << '\n'; } else { std::cout << a.erase(k - 1) << '\n'; } } } }