package main import ( "bufio" "fmt" "os" "sort" ) func main() { // https://yukicoder.me/problems/no/583 in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, m int fmt.Fscan(in, &n, &m) et := NewEulerianTrail(n, false) for i := 0; i < m; i++ { var a, b int fmt.Fscan(in, &a, &b) et.AddEdge(a, b) } res := et.EnumerateSemiEulerianTrail(0) if len(res) == 1 { fmt.Fprintln(out, "YES") } else { fmt.Fprintln(out, "NO") } } func main2() { // https: //www.luogu.com.cn/problem/P7771 // 有向图字典序最小的欧拉路径 in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, m int fmt.Fscan(in, &n, &m) edges := make([][]int, 0, m) et := NewEulerianTrail(n+1, true) for i := 0; i < m; i++ { var a, b int fmt.Fscan(in, &a, &b) et.AddEdge(a, b) edges = append(edges, []int{a, b}) } res := et.EnumerateSemiEulerianTrail(-1) if len(res) != 1 { fmt.Fprintln(out, "No") } else { ids := res[0] path := make([]int, 0, len(ids)+1) for i, id := range ids { a, b := edges[id][0], edges[id][1] path = append(path, a) if i == len(ids)-1 { path = append(path, b) } } for _, v := range path { fmt.Fprint(out, v, " ") } } } type EulerianTrail struct { g [][][2]int es [][2]int m int usedVertex []bool usedEdge []bool deg []int directed bool } func NewEulerianTrail(n int, directed bool) *EulerianTrail { res := &EulerianTrail{ g: make([][][2]int, n), usedVertex: make([]bool, n), deg: make([]int, n), directed: directed, } return res } func (e *EulerianTrail) AddEdge(a, b int) { e.es = append(e.es, [2]int{a, b}) e.g[a] = append(e.g[a], [2]int{b, e.m}) if e.directed { e.deg[a]++ e.deg[b]-- } else { e.g[b] = append(e.g[b], [2]int{a, e.m}) e.deg[a]++ e.deg[b]++ } e.m++ } // 枚举所有连通块的`欧拉回路`,返回边的编号. // 如果连通块内不存在欧拉回路,返回空. // lex: -1: 字典序最小, 0: 任意, 1: 字典序最大. func (e *EulerianTrail) EnumerateEulerianTrail(lex int8) [][]int { if e.directed { for _, d := range e.deg { if d != 0 { return [][]int{} } } } else { for _, d := range e.deg { if d&1 == 1 { return [][]int{} } } } e.sortNeighborsByLex(lex) e.usedEdge = make([]bool, e.m) res := [][]int{} for i := 0; i < len(e.g); i++ { if !e.usedVertex[i] && len(e.g[i]) > 0 { res = append(res, e.work(i)) } } return res } // 枚举所有连通块的`欧拉路径`(半欧拉回路),返回边的编号. // 如果连通块内不存在欧拉路径,返回空. // lex: -1: 字典序最小, 0: 任意, 1: 字典序最大. func (e *EulerianTrail) EnumerateSemiEulerianTrail(lex int8) [][]int { e.sortNeighborsByLex(lex) uf := newUnionFindArray(len(e.g)) for _, es := range e.es { uf.Union(es[0], es[1]) } group := make([][]int, len(e.g)) for i := 0; i < len(e.g); i++ { group[uf.Find(i)] = append(group[uf.Find(i)], i) } res := [][]int{} e.usedEdge = make([]bool, e.m) for _, vs := range group { if len(vs) == 0 { continue } latte, malta := -1, -1 if e.directed { for _, p := range vs { if abs(e.deg[p]) > 1 { return [][]int{} } else if e.deg[p] == 1 { if latte >= 0 { return [][]int{} } latte = p } } } else { for _, p := range vs { if e.deg[p]&1 == 1 { if latte == -1 { latte = p } else if malta == -1 { malta = p } else { return [][]int{} } } } } var cur []int if latte == -1 { cur = e.work(vs[0]) } else { cur = e.work(latte) } if len(cur) > 0 { res = append(res, cur) } } return res } func (e *EulerianTrail) GetEdge(index int) (int, int) { return e.es[index][0], e.es[index][1] } func (e *EulerianTrail) work(s int) []int { st := [][2]int{} ord := []int{} st = append(st, [2]int{s, -1}) for len(st) > 0 { index := st[len(st)-1][0] e.usedVertex[index] = true if len(e.g[index]) == 0 { ord = append(ord, st[len(st)-1][1]) st = st[:len(st)-1] } else { e_ := e.g[index][len(e.g[index])-1] e.g[index] = e.g[index][:len(e.g[index])-1] if e.usedEdge[e_[1]] { continue } e.usedEdge[e_[1]] = true st = append(st, [2]int{e_[0], e_[1]}) } } ord = ord[:len(ord)-1] for i, j := 0, len(ord)-1; i < j; i, j = i+1, j-1 { ord[i], ord[j] = ord[j], ord[i] } return ord } func (e *EulerianTrail) sortNeighborsByLex(useLex int8) { if useLex == -1 { e.sortNeighbors(true) } else if useLex == 1 { e.sortNeighbors(false) } } // 排在后面的边先出来. func (e *EulerianTrail) sortNeighbors(reverse bool) { for _, es := range e.g { sort.Slice(es, func(i, j int) bool { if reverse { return es[i][0] > es[j][0] } return es[i][0] < es[j][0] }) } } func abs(x int) int { if x < 0 { return -x } return x } func newUnionFindArray(n int) *unionFindArray { parent, rank := make([]int, n), make([]int, n) for i := 0; i < n; i++ { parent[i] = i rank[i] = 1 } return &unionFindArray{ Part: n, size: n, Rank: rank, parent: parent, } } type unionFindArray struct { size int Part int Rank []int parent []int } func (ufa *unionFindArray) Union(key1, key2 int) bool { root1, root2 := ufa.Find(key1), ufa.Find(key2) if root1 == root2 { return false } if ufa.Rank[root1] > ufa.Rank[root2] { root1, root2 = root2, root1 } ufa.parent[root1] = root2 ufa.Rank[root2] += ufa.Rank[root1] ufa.Part-- return true } func (ufa *unionFindArray) Find(key int) int { for ufa.parent[key] != key { ufa.parent[key] = ufa.parent[ufa.parent[key]] key = ufa.parent[key] } return key } func (ufa *unionFindArray) IsConnected(key1, key2 int) bool { return ufa.Find(key1) == ufa.Find(key2) } func (ufa *unionFindArray) Size(key int) int { return ufa.Rank[ufa.Find(key)] }