#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; template struct ModInt { int x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt &operator^=(long long p) { // quick_pow here:3 ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(long long p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) { x = p; return ModInt(*this); } // added by QCFium ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream &operator<<(std::ostream &os, const ModInt &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, ModInt &a) { long long x; is >> x; a = ModInt(x); return (is); } }; long long mod_pow(long long x, int n, int p) { long long ret = 1; while (n) { /* ∧,,,∧ (  ̳• · • ̳) /    づ♡ I love you */ if (n & 1) (ret *= x) %= p; (x *= x) %= p; n >>= 1; } return ret; } std::pair, std::vector> get_prime_factor_with_kinds( long long n) { std::vector prime_factors; std::vector cnt; // number of i_th factor for (long long i = 2; i <= sqrt(n); i++) { if (n % i == 0) { prime_factors.push_back(i); cnt.push_back(0); while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++; } } if (n > 1) prime_factors.push_back(n), cnt.push_back(1); assert(prime_factors.size() == cnt.size()); return {prime_factors, cnt}; } using mint = ModInt<1000000007>; // using mint = ModInt<998244353>; void solve() { int n; std::cin >> n; std::vector nums(n); for (int &x : nums) std::cin >> x; std::vector dp; for (int x : nums) { if (dp.empty() || x % dp.back() == 0) dp.push_back(x); else if (dp.back() % x == 0) { auto it = std::lower_bound(dp.begin(), dp.end(), x); *it = x; } } std::cout << dp.size() << '\n'; } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int t = 1; while (t--) solve(); return 0; }