package main import ( "bufio" "fmt" "os" ) func main() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n int fmt.Fscan(in, &n) S := make([]int, n) for i := 0; i < n; i++ { fmt.Fscan(in, &S[i]) } T := make([]int, n) for i := 0; i < n; i++ { fmt.Fscan(in, &T[i]) } U := make([]int, n) for i := 0; i < n; i++ { fmt.Fscan(in, &U[i]) } // 条件i为A[i][j]取0 ts := NewTwoSat(n * n) for i := 0; i < n; i++ { si := S[i] ti := T[i] for j := 0; j < n; j++ { pos1 := si*n + j pos2 := j*n + ti // 1. 0/0 if U[i] == 0 { ts.AddNand(pos1, pos2) } // 2. 0/1 if U[i] == 2 { ts.AddNand(pos1, ts.Rev(pos2)) } // 3. 1/0 if U[i] == 1 { ts.AddNand(ts.Rev(pos1), pos2) } // 4. 1/1 if U[i] == 3 { ts.AddNand(ts.Rev(pos1), ts.Rev(pos2)) } } } res, ok := ts.Solve() if !ok { fmt.Fprintln(out, -1) return } matrix := make([][]int, n) for i := 0; i < n; i++ { matrix[i] = make([]int, n) } for i, v := range res { if v { matrix[i/n][i%n] = 1 } } for i := 0; i < n; i++ { for j := 0; j < n; j++ { fmt.Fprint(out, matrix[i][j], " ") } fmt.Fprintln(out) } } type TwoSat struct { sz int scc *StronglyConnectedComponents } func NewTwoSat(n int) *TwoSat { return &TwoSat{sz: n, scc: NewStronglyConnectedComponents(n + n)} } // u -> v <=> !v -> !u func (ts *TwoSat) AddIf(u, v int) { ts.scc.AddEdge(u, v, 1) ts.scc.AddEdge(ts.Rev(v), ts.Rev(u), 1) } // u or v <=> !u -> v func (ts *TwoSat) AddOr(u, v int) { ts.AddIf(ts.Rev(u), v) } // u nand v <=> u -> !v func (ts *TwoSat) AddNand(u, v int) { ts.AddIf(u, ts.Rev(v)) } // u <=> !u -> u func (ts *TwoSat) SetTrue(u int) { ts.scc.AddEdge(ts.Rev(u), u, 1) } // !u <=> u -> !u func (ts *TwoSat) SetFalse(u int) { ts.scc.AddEdge(u, ts.Rev(u), 1) } func (ts *TwoSat) Rev(u int) int { if u >= ts.sz { return u - ts.sz } return u + ts.sz } func (ts *TwoSat) Solve() (res []bool, ok bool) { ts.scc.Build() res = make([]bool, ts.sz) for i := 0; i < ts.sz; i++ { if ts.scc.Comp[i] == ts.scc.Comp[ts.Rev(i)] { return } res[i] = ts.scc.Comp[i] > ts.scc.Comp[ts.Rev(i)] } ok = true return } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a > b { return a } return b } type WeightedEdge struct{ from, to, cost int } type StronglyConnectedComponents struct { G [][]WeightedEdge // 原图 Dag [][]WeightedEdge // 强连通分量缩点后的顶点和边组成的DAG Comp []int //每个顶点所属的强连通分量的编号 Group [][]int // 每个强连通分量所包含的顶点 rg [][]WeightedEdge order []int used []bool } func NewStronglyConnectedComponents(n int) *StronglyConnectedComponents { return &StronglyConnectedComponents{G: make([][]WeightedEdge, n)} } func (scc *StronglyConnectedComponents) AddEdge(from, to, cost int) { scc.G[from] = append(scc.G[from], WeightedEdge{from, to, cost}) } func (scc *StronglyConnectedComponents) Build() { scc.rg = make([][]WeightedEdge, len(scc.G)) for i := range scc.G { for _, e := range scc.G[i] { scc.rg[e.to] = append(scc.rg[e.to], WeightedEdge{e.to, e.from, e.cost}) } } scc.Comp = make([]int, len(scc.G)) for i := range scc.Comp { scc.Comp[i] = -1 } scc.used = make([]bool, len(scc.G)) for i := range scc.G { scc.dfs(i) } for i, j := 0, len(scc.order)-1; i < j; i, j = i+1, j-1 { scc.order[i], scc.order[j] = scc.order[j], scc.order[i] } ptr := 0 for _, v := range scc.order { if scc.Comp[v] == -1 { scc.rdfs(v, ptr) ptr++ } } dag := make([][]WeightedEdge, ptr) for i := range scc.G { for _, e := range scc.G[i] { x, y := scc.Comp[e.from], scc.Comp[e.to] if x == y { continue } dag[x] = append(dag[x], WeightedEdge{x, y, e.cost}) } } scc.Dag = dag scc.Group = make([][]int, ptr) for i := range scc.G { scc.Group[scc.Comp[i]] = append(scc.Group[scc.Comp[i]], i) } } // 获取顶点k所属的强连通分量的编号 func (scc *StronglyConnectedComponents) Get(k int) int { return scc.Comp[k] } func (scc *StronglyConnectedComponents) dfs(idx int) { tmp := scc.used[idx] scc.used[idx] = true if tmp { return } for _, e := range scc.G[idx] { scc.dfs(e.to) } scc.order = append(scc.order, idx) } func (scc *StronglyConnectedComponents) rdfs(idx int, cnt int) { if scc.Comp[idx] != -1 { return } scc.Comp[idx] = cnt for _, e := range scc.rg[idx] { scc.rdfs(e.to, cnt) } }