#pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; //ll mod = 1; constexpr ll mod = 998244353; //constexpr ll mod = 1000000007; const ll INF = mod * mod; typedef pairP; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair LP; template void chmin(T& a, T b) { a = min(a, b); } template void chmax(T& a, T b) { a = max(a, b); } template vector vmerge(vector& a, vector& b) { vector res; int ida = 0, idb = 0; while (ida < a.size() || idb < b.size()) { if (idb == b.size()) { res.push_back(a[ida]); ida++; } else if (ida == a.size()) { res.push_back(b[idb]); idb++; } else { if (a[ida] < b[idb]) { res.push_back(a[ida]); ida++; } else { res.push_back(b[idb]); idb++; } } } return res; } template void cinarray(vector& v) { rep(i, v.size())cin >> v[i]; } template void coutarray(vector& v) { rep(i, v.size()) { if (i > 0)cout << " "; cout << v[i]; } cout << "\n"; } ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; //if (x == 0)return 0; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } //mod should be <2^31 struct modint { int n; modint() :n(0) { ; } modint(ll m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } n = m; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } bool operator<(modint a, modint b) { return a.n < b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 20; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } using ld = long double; //typedef long double ld; typedef pair LDP; const ld eps = 1e-10; const ld pi = acosl(-1.0); template void addv(vector& v, int loc, T val) { if (loc >= v.size())v.resize(loc + 1, 0); v[loc] += val; } /*const int mn = 2000005; bool isp[mn]; vector ps; void init() { fill(isp + 2, isp + mn, true); for (int i = 2; i < mn; i++) { if (!isp[i])continue; ps.push_back(i); for (int j = 2 * i; j < mn; j += i) { isp[j] = false; } } }*/ //[,val) template auto prev_itr(set& st, T val) { auto res = st.lower_bound(val); if (res == st.begin())return st.end(); res--; return res; } //[val,) template auto next_itr(set& st, T val) { auto res = st.lower_bound(val); return res; } using mP = pair; mP operator+(mP a, mP b) { return { a.first + b.first,a.second + b.second }; } mP operator+=(mP& a, mP b) { a = a + b; return a; } mP operator-(mP a, mP b) { return { a.first - b.first,a.second - b.second }; } mP operator-=(mP& a, mP b) { a = a - b; return a; } LP operator+(LP a, LP b) { return { a.first + b.first,a.second + b.second }; } LP operator+=(LP& a, LP b) { a = a + b; return a; } LP operator-(LP a, LP b) { return { a.first - b.first,a.second - b.second }; } LP operator-=(LP& a, LP b) { a = a - b; return a; } mt19937 mt(time(0)); const string drul = "DRUL"; string senw = "SENW"; //DRUL,or SENW int dx[4] = { 1,0,-1,0 }; int dy[4] = { 0,1,0,-1 }; //----------------------------------------- #define ftt function #define ftu function #define fuu function template struct SegT { private: int n; vector node; vector lazy; T et; U eu; ftt f; ftu g; fuu h; public: SegT(vector ori, T _et, U _eu, ftt _f, ftu _g, fuu _h) { int sz = ori.size(); et = _et, eu = _eu; f = _f, g = _g, h = _h; n = 1; while (n < sz)n <<= 1; node.resize(2 * n - 1, et); lazy.resize(2 * n - 1, eu); rep(i, sz) { node[i + n - 1] = ori[i]; } per(i, n - 1) { node[i] = f(node[2 * i + 1], node[2 * i + 2]); } } SegT(int sz, T _et, U _eu, ftt _f, ftu _g, fuu _h) { et = _et, eu = _eu; f = _f, g = _g, h = _h; n = 1; while (n < sz)n <<= 1; node.resize(2 * n - 1, et); lazy.resize(2 * n - 1, eu); } void eval(int k, int l, int r) { if (lazy[k] == eu)return; node[k] = g(node[k], lazy[k], l, r); if (r - l > 1) { lazy[2 * k + 1] = h(lazy[k], lazy[2 * k + 1]); lazy[2 * k + 2] = h(lazy[k], lazy[2 * k + 2]); } lazy[k] = eu; } void add(U x, int a, int b, int k = 0, int l = 0, int r = -1) { if (r < 0)r = n; eval(k, l, r); if (r <= a || b <= l)return; if (a <= l && r <= b) { lazy[k] = h(x, lazy[k]); eval(k, l, r); } else { add(x, a, b, k * 2 + 1, l, (l + r) / 2); add(x, a, b, k * 2 + 2, (l + r) / 2, r); node[k] = f(node[k * 2 + 1], node[k * 2 + 2]); } } T query(int a, int b, int k = 0, int l = 0, int r = -1) { if (r < 0)r = n; eval(k, l, r); if (r <= a || b <= l)return et; if (a <= l && r <= b)return node[k]; else { T vl = query(a, b, k * 2 + 1, l, (l + r) / 2); T vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return f(vl, vr); } } void update(int loc, T x) { int k = 0, l = 0, r = n; stack

st; while (k < n - 1) { eval(k, l, r); st.push({ l,r }); if (loc < (l + r) / 2) { k = 2 * k + 1; r = (l + r) / 2; } else { k = 2 * k + 2; l = (l + r) / 2; } } eval(k, l, r); st.push({ l,r }); node[k] = x; while (k > 0) { k = (k - 1) / 2; st.pop(); l = st.top().first, r = st.top().second; eval(2 * k + 1, l, (l + r) / 2); eval(2 * k + 2, (l + r) / 2, r); node[k] = f(node[2 * k + 1], node[2 * k + 2]); } } //k以上でf(x,node[y+sz-1])をtrueにするような最小のy int searchloc(int le, T x, function comp) { int k = 0, l = 0, r = n; while (k < n - 1) { eval(k, l, r); int m = (l + r) / 2; if (le < m) { k = 2 * k + 1; r = m; } else { k = 2 * k + 2; l = m; } } assert(k == le + n - 1); eval(k, l, r); if (comp(x, node[k]))return le; //x=f(x,node[k]); while (k > 0) { int mem = k; k = (k - 1) / 2; if (2 * k + 1 == mem) { r += r - l; } else { l -= r - l; } if (2 * k + 1 == mem) { eval(2 * k + 2, (l + r) / 2, r); if (comp(x, node[2 * k + 2])) { k = 2 * k + 2; l = (l + r) / 2; break; } //x=f(x,node[2*k+2]); } } if (k == 0)return n; while (k < n - 1) { eval(2 * k + 1, l, (l + r) / 2); eval(2 * k + 2, (l + r) / 2, r); if (comp(x, node[2 * k + 1])) { k = 2 * k + 1; r = (l + r) / 2; } else { k = 2 * k + 2; l = (l + r) / 2; //x=f(x,node[2*k+1]); } } return k - (n - 1); } }; void solve() { int n; cin >> n; ll ans = 0; vector ori(n - 1); rep(i, n-1) { ll t; cin >> t; ori[i] = 3 * (n - 1 - i) + t; } auto f = [&](ll a, ll b) { return max(a, b); }; auto g = [&](ll a, ll b, int l, int r) { a += b; return a; }; auto h = [&](ll a, ll b) { return a + b; }; SegT st(ori, 0, 0, f, g, h); int q; cin >> q; rep(i, q) { int x, l, r; cin >> l >> r >> x; l--; st.add(x, l, r); ll ans = st.query(0, n - 1); cout << ans << "\n"; } } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(10); //init_f(); //init(); //while(true) //return 0; //int t; cin >> t; rep(i, t) solve(); return 0; }