from __future__ import annotations import array import bisect import fractions import heapq import itertools import math import random import re import string import sys import time from collections import defaultdict, deque from functools import lru_cache sys.setrecursionlimit(10**6) INF = 10**20 MOD = 10**9 + 7 def read_int_list(): return list(map(int, input().split())) def read_int(): return int(input()) def read_str_list(): return list(input().split()) def read_str(): return input() def is_prime(n: int) -> bool: if n < 2: return False i = 2 ok = True while i * i <= n: if n % i == 0: ok = False i += 1 return ok def eratosthenes(n: int) -> list[bool]: is_prime_list = ([False, True] * (n // 2 + 1))[0 : n + 1] is_prime_list[1] = False is_prime_list[2] = True for i in range(3, n + 1, 2): if not (is_prime_list[i]): continue if i * i > n: break for k in range(i * i, n + 1, i): is_prime_list[k] = False return is_prime_list def legendre(n: int, p: int) -> int: cnt = 0 pp = p while pp <= n: cnt += n // pp pp *= p return cnt def prime_factorize(n: int) -> defaultdict[int, int]: nn = n i = 2 d: defaultdict[int, int] = defaultdict(int) while i * i <= n: while nn % i == 0: d[i] += 1 nn //= i i += 1 if nn != 1: d[nn] += 1 return d def make_divisors(n: int) -> list[int]: i = 1 ret = [] while i * i <= n: if n % i == 0: ret.append(i) if i != n // i: ret.append(n // i) i += 1 ret.sort() return ret def gcd(a: int, b: int) -> int: if a == 0: return b else: return gcd(b % a, a) def lcm(a: int, b: int) -> int: return a * b // gcd(a, b) def align_heap(A: list[int], start: int, end: int): k = start while True: if 2 * k + 2 < end: p = A[k] l = A[2 * k + 1] r = A[2 * k + 2] m = max(p, l, r) if m == p: break elif m == l: A[k], A[2 * k + 1] = A[2 * k + 1], A[k] k = 2 * k + 1 else: A[k], A[2 * k + 2] = A[2 * k + 2], A[k] k = 2 * k + 2 elif 2 * k + 1 < end: p = A[k] l = A[2 * k + 1] m = max(p, l) if m == p: break else: A[k], A[2 * k + 1] = A[2 * k + 1], A[k] k = 2 * k + 1 else: break def build_heap(A: list[int]): N = len(A) for x in range(N // 2 - 1, -1, -1): align_heap(A, x, N) def heap_sort(A: list[int], M: int): build_heap(A) N = len(A) for i in range(N - 1, 0, -1): A[0], A[i] = A[i], A[0] align_heap(A, 0, i) if i == M: print(*A) print(*A) @lru_cache def f(x: int) -> int: if x == 0: return 0 elif x == 1: return 1 return f(x - 1) + f(x - 2) def dfs(pos: int, G: list[list[int]], visited: list[bool], is_chosen: list[bool]): ok = True for nxt in G[pos]: if not visited[nxt]: visited[nxt] = True dfs(nxt, G, visited, is_chosen) ok &= not is_chosen[nxt] is_chosen[pos] = ok def solve(): L, R, A, B = read_int_list() if A > 0: print(A * R + B) else: print(A * L + B) def main(): # solve() t = read_int() for _ in range(t): solve() main()