#pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #include <iostream> #include <string> #include <stdio.h> #include <stdint.h> #include <cassert> using namespace std; using ll = long long; #define MAIN main #define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n" #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ int MAIN() { UNTIE; CEXPR( ll , bound_T , 100000 ); CIN_ASSERT( T , 1 , bound_T ); CEXPR( ll , bound_NM , 1000000000000000000 ); CEXPR( ll , mod_max , 1000000000 ); CEXPR( int , exponent , 400000000 - 1 ); constexpr ll p[2] = { 2 , 5 }; REPEAT( T ){ CIN_ASSERT( N , 1 , bound_NM ); CIN_ASSERT( M , 1 , bound_NM ); ll mod = mod_max; bool solvable = true; FOR( i , 0 , 2 ){ const ll& pi = p[i]; REPEAT( 9 ){ if( N % pi == 0 ){ if( M % pi == 0 ){ N /= pi; M /= pi; mod /= pi; } else { solvable = false; break; } } else { break; } } if( ! solvable ){ break; } } if( solvable ){ POWER_MOD( inv_N , N , exponent , mod ); ll n = ( inv_N * ( mod - ( M % mod ) ) ) % mod; if( n == 0 ){ n = mod; } COUT( n ); } else { COUT( -1 ); } } QUIT; }