#line 1 "main.cpp" #include #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rrep(i, n) for (int i = (int)(n - 1); i >= 0; i--) #define all(x) (x).begin(), (x).end() #define sz(x) int(x.size()) using namespace std; using ll = long long; const int INF = 1e9; const ll LINF = 1e18; template void get_unique(vector& x) { x.erase(unique(x.begin(), x.end()), x.end()); } template bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template vector make_vec(size_t a) { return vector(a); } template auto make_vec(size_t a, Ts... ts) { return vector(ts...))>(a, make_vec(ts...)); } template istream& operator>>(istream& is, vector& v) { for (int i = 0; i < int(v.size()); i++) { is >> v[i]; } return is; } template ostream& operator<<(ostream& os, const vector& v) { for (int i = 0; i < int(v.size()); i++) { os << v[i]; if (i < sz(v) - 1) os << ' '; } return os; } #line 3 "/Users/gyouzasushi/kyopro/library/math/convolution.hpp" #include #line 5 "/Users/gyouzasushi/kyopro/library/math/convolution.hpp" #line 2 "/Users/gyouzasushi/kyopro/library/math/modint.hpp" #line 5 "/Users/gyouzasushi/kyopro/library/math/modint.hpp" #ifdef _MSC_VER #include #endif namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal #line 35 "/Users/gyouzasushi/kyopro/library/math/modint.hpp" namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast moduler by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) { } // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) // < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; for (long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal #line 214 "/Users/gyouzasushi/kyopro/library/math/modint.hpp" namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value && std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value && std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value && std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value && std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal #line 299 "/Users/gyouzasushi/kyopro/library/math/modint.hpp" #ifdef _MSC_VER #include #endif namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) { } template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) { } template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal #line 599 "/Users/gyouzasushi/kyopro/library/math/modint.hpp" template ::value, std::nullptr_t> = nullptr> std::istream& operator>>(std::istream& is, T& v) { long long x; is >> x; v = x; return is; } template ::value, std::nullptr_t> = nullptr> std::ostream& operator<<(std::ostream& os, const T& v) { os << v.val(); return os; } #line 7 "/Users/gyouzasushi/kyopro/library/math/convolution.hpp" namespace internal { template * = nullptr> void butterfly(std::vector& a) { static constexpr int g = internal::primitive_root; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = internal::bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[internal::bsf(~(unsigned int)(s))]; } } } template * = nullptr> void butterfly_inv(std::vector& a) { static constexpr int g = internal::primitive_root; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = internal::bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { // e^(2^i) == 1 es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[internal::bsf(~(unsigned int)(s))]; } } } } // namespace internal template * = nullptr> std::vector convolution(std::vector a, std::vector b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) { if (n < m) { std::swap(n, m); std::swap(a, b); } std::vector ans(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } template ::value>* = nullptr> std::vector convolution(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint; std::vector a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector convolution_ll(const std::vector& a, const std::vector& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution(a, b); auto c2 = convolution(a, b); auto c3 = convolution(a, b); std::vector c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; // B = 2^63, -B <= x, r(real value) < B // (x, x - M, x - 2M, or x - 3M) = r (mod 2B) // r = c1[i] (mod MOD1) // focus on MOD1 // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B) // r = x, // x - M' + (0 or 2B), // x - 2M' + (0, 2B or 4B), // x - 3M' + (0, 2B, 4B or 6B) (without mod!) // (r - x) = 0, (0) // - M' + (0 or 2B), (1) // -2M' + (0 or 2B or 4B), (2) // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1) // we checked that // ((1) mod MOD1) mod 5 = 2 // ((2) mod MOD1) mod 5 = 3 // ((3) mod MOD1) mod 5 = 4 long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } #line 54 "main.cpp" vector f(vector a, vector b) { reverse(all(b)); vector c = convolution_ll(a, b); return vector(c.begin() + sz(b) - 1, c.end()); } // ret[i] := s[i..i+m] と t がマッチするか vector match(string s, string t) { int n = sz(s), m = sz(t); vector a1(n), a2(n), a3(n); rep(i, n) { a1[i] = s[i] == '?' ? 0 : ll(s[i]); a2[i] = a1[i] * a1[i]; a3[i] = a2[i] * a1[i]; } vector b1(m), b2(m), b3(m); rep(i, m) { b1[i] = t[i] == '?' ? 0 : ll(t[i]); b2[i] = b1[i] * b1[i]; b3[i] = b2[i] * b1[i]; } vector c1 = f(a3, b1); vector c2 = f(a2, b2); vector c3 = f(a1, b3); vector ret(n); rep(i, n) { ret[i] = c1[i] - c2[i] * 2 + c3[i] == 0; } return ret; } #line 7 "/Users/gyouzasushi/kyopro/library/string/rolling_hash.hpp" #line 3 "/Users/gyouzasushi/kyopro/library/math/modint2305843009213693951.hpp" struct modint2305843009213693951 { using mint = modint2305843009213693951; public: static constexpr uint64_t mod = 2305843009213693951; modint2305843009213693951() : _v(0) { } modint2305843009213693951(uint64_t v) : _v(fast_mod(v)) { } static constexpr uint64_t fast_mod(uint64_t v) { uint64_t u = v >> 61; uint64_t d = v & mod; uint64_t x = u + d; if (x > mod) x -= mod; return x; } uint64_t val() const { return _v; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= mod) _v -= mod; return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= mod) _v += mod; return *this; } mint& operator*=(const mint& rhs) { static constexpr uint64_t mask31 = (uint64_t(1) << 31) - 1; static constexpr uint64_t mask30 = (uint64_t(1) << 30) - 1; uint64_t au = _v >> 31; uint64_t ad = _v & mask31; uint64_t bu = rhs._v >> 31; uint64_t bd = rhs._v & mask31; uint64_t m = ad * bu + au * bd; uint64_t mu = m >> 30; uint64_t md = m & mask30; _v = fast_mod((au * bu << 1) + mu + (md << 31) + ad * bd); return *this; } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(uint64_t n) const { mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: uint64_t _v; }; #line 3 "/Users/gyouzasushi/kyopro/library/math/pow_table.hpp" template struct pow_mods { pow_mods() { } pow_mods(mint base, int n) : base(base) { ensure(n); } const mint& operator[](int i) const { ensure(i); return pows[i]; } void ensure(int n) const { int sz = pows.size(); if (sz > n) return; pows.resize(n + 1); for (int i = sz; i <= n; i++) pows[i] = base * pows[i - 1]; } private: mutable std::vector pows{1}; mint base; static constexpr int mod = mint::mod; }; #line 10 "/Users/gyouzasushi/kyopro/library/string/rolling_hash.hpp" template struct RollingHash { public: RollingHash() { } RollingHash(const std::vector& a) : n(a.size()) { for (int base_id = 0; base_id < base_num; base_id++) { hashes[base_id].resize(n + 1); hashes[base_id][0] = 0; for (int i = 0; i < n; i++) { hashes[base_id][i + 1] = hashes[base_id][i] * bases[base_id] + a[i]; } } } template static RollingHash from(const Iterable& s) { std::vector a; for (auto&& e : s) a.push_back(int(e)); return RollingHash(a); } std::array operator()(int l, int r) { assert(0 <= l && l <= r && r <= n); std::array res; for (int base_id = 0; base_id < base_num; base_id++) { res[base_id] = hashes[base_id][r] - hashes[base_id][l] * pows[base_id][r - l]; } return res; } static std::array concat( const std::array& h1, const std::array& h2, int h2_len) { std::array res; for (int base_id = 0; base_id < base_num; base_id++) { res[base_id] = h1[base_id] * pows[base_id][h2_len] + h2[base_id]; } return res; } int lcp(int l1, int r1, int l2, int r2) { int len = std::min(r1 - l1, r2 - l2); int ok = 0, ng = len + 1; while (ng - ok > 1) { int mid = (ok + ng) / 2; bool f = (*this)(l1, l1 + mid) == (*this)(l2, l2 + mid); (f ? ok : ng) = mid; } return ok; } int cmp(int l1, int r1, int l2, int r2) { int x = std::min({lcp(l1, r1, l2, r2), r1 - l1, r2 - l2}); if (l1 + x == r1 && l2 + x != r2) return -1; if (l1 + x == r1 && l2 + x == r2) return 0; if (l1 + x != r1 && l2 + x == r2) return 1; return (*this)(l1 + x, l1 + x + 1)[0].val() < (*this)(l2 + x, l2 + x + 1)[0].val() ? -1 : 1; } static int lcp(RollingHash& rh1, int l1, int r1, RollingHash& rh2, int l2, int r2) { int len = std::min(r1 - l1, r2 - l2); int ok = 0, ng = len + 1; while (ng - ok > 1) { int mid = (ok + ng) / 2; bool f = rh1(l1, l1 + mid) == rh2(l2, l2 + mid); (f ? ok : ng) = mid; } return ok; } static int cmp(RollingHash& rh1, int l1, int r1, RollingHash& rh2, int l2, int r2) { int x = std::min({lcp(rh1, l1, r1, rh2, l2, r2), r1 - l1, r2 - l2}); if (l1 + x == r1 && l2 + x != r2) return -1; if (l1 + x == r1 && l2 + x == r2) return 0; if (l1 + x != r1 && l2 + x == r2) return 1; return rh1(l1 + x, l1 + x + 1)[0].val() < rh2(l2 + x, l2 + x + 1)[0].val() ? -1 : 1; } private: static inline std::array gen_bases() { static std::mt19937_64 rng(std::random_device{}()); std::array bases; for (int i = 0; i < base_num; i++) { while (true) { uint64_t k = std::uniform_int_distribution( 1, mint::mod - 1)(rng); if (std::gcd(k, mint::mod - 1) != 1) continue; uint64_t b = mint(r).pow(k).val(); if (b <= A) continue; bases[i] = b; break; } } return bases; } static inline std::array, base_num> init_pows( const std::array& bases) { std::array, base_num> pows; for (int i = 0; i < base_num; i++) { pows[i] = pow_mods(bases[i], 0); } return pows; } static inline std::array bases = gen_bases(); static inline std::array, base_num> pows = init_pows(bases); int n; std::array, base_num> hashes; static constexpr uint64_t r = 37; static constexpr uint64_t A = 2147483647; }; #line 84 "main.cpp" void solve() { int n, m; cin >> n >> m; string s, t; cin >> s >> t; vector ok = match(s, t); rep(i, n) if (s[i] == '?') s[i] = 'a'; auto rhs = RollingHash<>::from(s); auto rht = RollingHash<>::from(t); auto gt = [&](int i, int j) { if (i > j) swap(i, j); if (i == -1) return true; int cmp1 = RollingHash<>::cmp(rht, 0, j - i, rhs, i, j); if (cmp1 != 0) return cmp1 == 1; int cmp2 = rht.cmp(j - i, m, 0, m - (j - i)); if (cmp2 != 0) return cmp2 == 1; int cmp3 = RollingHash<>::cmp(rhs, i + m, j + m, rht, m - (j - i), m); return cmp3 == 1; }; int ans = -1; rep(i, n - m + 1) if (ok[i]) { if (gt(ans, i)) ans = i; } cerr << ans << '\n'; if (ans == -1) { cout << -1 << '\n'; return; } rep(i, m) s[ans + i] = t[i]; cout << s << '\n'; return; } int main() { int tt; cin >> tt; while (tt--) solve(); }