import sys # sys.setrecursionlimit(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = (1 << 63)-1 # inf = (1 << 31)-1 md = 10**9+7 # md = 998244353 def prime_factorization(a): pp, ee = [], [] if a & 1 == 0: pp += [2] ee += [0] while a & 1 == 0: a >>= 1 ee[-1] += 1 p = 3 while p**2 <= a: if a%p == 0: pp += [p] ee += [0] while a%p == 0: a //= p ee[-1] += 1 p += 2 if a > 1: pp += [a] ee += [1] return pp, ee def solve(): n, m = LI() ans = 1 if m==1: print(0) elif n >= m: print(0) elif n <= 10**5+5: for a in range(2, n+1): ans = ans*a%m print(ans) else: _, ee = prime_factorization(m) if len(ee) == ee[0] == 1: a = m-1 for b in range(m-1, n, -1): a = a*pow(b, m-2, m)%m print(a) elif n*2 > m: print(0) else: a = 1 for b in range(2, n+1): a = a*b%m print(a) for _ in range(II()): solve()