#pragma GCC optimization ("O3") #include using namespace std; using ll = long long; using vec = vector; using mat = vector; using pll = pair; using dvec = vector; using dmat = vector; #define INF (1LL<<61) //#define MOD 1000000007LL #define MOD 998244353LL #define PR(x) cout << (x) << endl #define PS(x) cout << (x) << " " #define REP(i,m,n) for(ll (i)=(m),(i_len)=(n);(i)<(i_len);++(i)) #define FORE(i,v) for(auto (i):v) #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((ll)(x).size()) #define REV(x) reverse(ALL((x))) #define ASC(x) sort(ALL((x))) #define DESC(x) {ASC((x)); REV((x));} #define BIT(s,i) (((s)>>(i))&1) #define pb push_back #define fi first #define se second template inline int chmin(T& a, T b) {if(a>b) {a=b; return 1;} return 0;} template inline int chmax(T& a, T b) {if(a=MOD) x-=MOD; return *this;} mint& operator-=(const mint& a) {if((x+=MOD-a.x)>=MOD) x-=MOD; return *this;} mint& operator*=(const mint& a) {(x*=a.x)%=MOD; return *this;} mint operator+(const mint& a) const {mint b(*this); return b+=a;} mint operator-(const mint& a) const {mint b(*this); return b-=a;} mint operator*(const mint& a) const {mint b(*this); return b*=a;} mint pow(ll t) const {if(!t) return 1; mint a=pow(t>>1); return (t&1?*this*a:a)*a;} mint inv() const {return pow(MOD-2);} mint& operator/=(const mint& a) {return *this*=a.inv();} mint operator/(const mint& a) const {mint b(*this); return b/=a;} }; istream &operator>>(istream& is, mint& a) {ll t; is>>t; a=t; return is;} ostream &operator<<(ostream& os, const mint& a) {return os<; using mmat = vector; ll gcd(ll a, ll b) { return !b?a:gcd(b,a%b); } vec gcd(ll a, ll b, ll c, ll d) { if(c == 0) return {a, b, c, d}; return gcd(c, d, a-a/c*c, b-a/c*d); } int main() { ll a, b, c, d, N; cin >> a >> b >> c >> d >> N; vec v = gcd(a, b, c, d); a = v[0]; b = v[1]; c = v[2]; d = abs(v[3]); set S; while(N--) { ll x, y; cin >> x >> y; if(a && d) { y -= x/a*b; y -= y/d*d; x -= x/a*a; if(x < 0) x += a, y += b; else if(x >= a) x -= a, y -= b; if(y < 0) y += d; else if(y >= d) y -= d; S.insert({x, y}); } else if(a && !d){ y -= x/a*b; x -= x/a*a; if(x < 0) x += a, y += b; else if(x >= a) x -= a, y -= b; S.insert({x, y}); } else { d = gcd(b, d); y %= d; S.insert({x, y}); } } PR(SZ(S)); return 0; } /* */