#line 1 "A.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/vertex_add_range_contour_sum_on_tree" // #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include using namespace std; using ll = long long; using ull = unsigned long long; template using pq = priority_queue; template using qp = priority_queue, greater>; #define vec(T, A, ...) vector A(__VA_ARGS__); #define vvec(T, A, h, ...) vector> A(h, vector(__VA_ARGS__)); #define vvvec(T, A, h1, h2, ...) vector>> A(h1, vector>(h2, vector(__VA_ARGS__))); #ifndef RIN__LOCAL #define endl "\n" #endif #define spa ' ' #define len(A) A.size() #define all(A) begin(A), end(A) #define fori1(a) for(ll _ = 0; _ < (a); _++) #define fori2(i, a) for(ll i = 0; i < (a); i++) #define fori3(i, a, b) for(ll i = (a); i < (b); i++) #define fori4(i, a, b, c) for(ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c)) #define overload4(a, b, c, d, e, ...) e #define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__) template vector> ENUMERATE(vector &A, ll s = 0){ vector> ret(A.size()); for(int i = 0; i < A.size(); i++) ret[i] = {i + s, A[i]}; return ret; } vector> ENUMERATE(string &A, ll s = 0){ vector> ret(A.size()); for(int i = 0; i < A.size(); i++) ret[i] = {i + s, A[i]}; return ret; } #define enum1(A) fori(A.size()) #define enum2(a, A) for(auto a:A) #define enum3(i, a, A) for(auto&& [i, a]: ENUMERATE(A)) #define enum4(i, a, A, s) for(auto&& [i, a]: ENUMERATE(A, s)) #define enum(...) overload4(__VA_ARGS__, enum4, enum3, enum2, enum1)(__VA_ARGS__) template vector> ZIP(vector &A, vector &B){ int n = min(A.size(), B.size()); vector> ret(n); for(int i = 0; i < n; i++) ret[i] = {A[i], B[i]}; return ret; } template vector> ENUMZIP(vector &A, vector &B, ll s = 0){ int n = min(A.size(), B.size()); vector> ret(n); for(int i = 0; i < n; i++) ret[i] = {i + s, A[i], B[i]}; return ret; } #define zip4(a, b, A, B) for(auto&& [a, b]: ZIP(A, B)) #define enumzip5(i, a, b, A, B) for(auto&& [i, a, b]: ENUMZIP(A, B)) #define enumzip6(i, a, b, A, B, s) for(auto&& [i, a, b]: ENUMZIP(A, B, s)) #define overload6(a, b, c, d, e, f, g, ...) g #define zip(...) overload6(__VA_ARGS__, enumzip6, enumzip5, zip4, _, _, _)(__VA_ARGS__) vector stoc(string &S){ int n = S.size(); vector ret(n); for(int i = 0; i < n; i++) ret[i] = S[i]; return ret; } #define INT(...) int __VA_ARGS__; inp(__VA_ARGS__); #define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__); #define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__); #define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__); #define VEC(T, A, n) vector A(n); inp(A); #define VVEC(T, A, n, m) vector> A(n, vector(m)); inp(A); const ll MOD1 = 1000000007; const ll MOD9 = 998244353; template auto min(const T& a){ return *min_element(all(a)); } template auto max(const T& a){ return *max_element(all(a)); } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } void FLUSH(){cout << flush;} void print(){cout << endl;} template void print(Head &&head, Tail &&... tail) { cout << head; if (sizeof...(Tail)) cout << spa; print(forward(tail)...); } template void print(vector &A){ int n = A.size(); for(int i = 0; i < n; i++){ cout << A[i]; if(i != n - 1) cout << ' '; } cout << endl; } template void print(vector> &A){ for(auto &row: A) print(row); } template void print(pair &A){ cout << A.first << spa << A.second << endl; } template void print(vector> &A){ for(auto &row: A) print(row); } template void prisep(vector &A, S sep){ int n = A.size(); for(int i = 0; i < n; i++){ cout << A[i]; if(i == n - 1) cout << endl; else cout << sep; } } template void priend(T A, S end){ cout << A << end; } template void priend(T A){ priend(A, spa); } template void inp(T&... a){ (cin >> ... >> a); } template void inp(vector &A){ for(auto &a:A) cin >> a; } template void inp(vector> &A){ for(auto &row:A) inp(row); } template void inp(pair &A){ inp(A.first, A.second); } template void inp(vector> &A){ for(auto &row: A) inp(row.first, row.second); } template T sum(vector &A){ T tot = 0; for(auto a:A) tot += a; return tot; } template pair, map> compression(vector X){ sort(all(X)); X.erase(unique(all(X)), X.end()); map mp; for(int i = 0; i < X.size(); i++) mp[X[i]] = i; return {X, mp}; } struct UnionFind{ int n; vector par; vector A; int group; UnionFind(int n, vector B) : n(n), A(B){ par.assign(n, -1); group = n; A.resize(n); } int find(int x){ if(par[x] < 0) return x; par[x] = find(par[x]); return par[x]; } bool unite(int x, int y){ x = find(x); y = find(y); if(x == y) return false; if(par[x] > par[y]) swap(x, y); group--; par[x] += par[y]; par[y] = x; A[x] += A[y]; return true; } bool same(int x, int y){ return find(x) == find(y); } int size(int x){ return -par[find(x)]; } vector roots(){ vector ret; for(int i = 0; i < n; i++){ if(i == find(i)) ret.push_back(i); } return ret; } }; #line 2 "Library/C++/tree/CentroidDecomposition.hpp" struct CentroidDecomposition{ public: int n; vector par; // 重心分解した木の直接の親 vector depth; // 重心分解した木の深さ vector size; // 頂点iを重心とする木のサイズ vector childcnt; // 頂点iの子の個数 vector> pars; // pars[i][j] := 頂点iの先祖のうち,深さがjである頂点 vector> edges; vector> centroids; // centroids[i] := 深さiの重心の一覧 vector> treeind; // treeind[i][j] := 頂点jが深さiの重心の何番目の部分木か vector> cent_depth; // cent_depth[i][j] := 頂点jと深さiの重心からの距離 CentroidDecomposition() = default; CentroidDecomposition(int n) : n(n){ edges.resize(n); pars.resize(n); childcnt.resize(n); par.assign(n, -1); depth.assign(n, -1); size.assign(n, -1); } void add_edge(int u, int v){ edges[u].push_back(v); edges[v].push_back(u); } void read_edges(int indexed=1, int m=-1){ if(m == -1) m = n - 1; while(m--){ int u, v; cin >> u >> v; add_edge(u - indexed, v - indexed); } } void build(){ dfs(0, -1); } pair>>, vector>> dist_freq(){ vector>> dist(n); vector> disttot(n); for(int i = 0; i < n; i++){ stack>> st; disttot[i] = {1}; dist[i].assign(childcnt[i], {0}); st.push({0, {i, -1}}); while(!st.empty()){ int d = st.top().first + 1; int pos = st.top().second.first; int bpos = st.top().second.second; st.pop(); for(auto npos:edges[pos]){ if(npos == bpos || depth[npos] < depth[i]) continue; st.push({d, {npos, pos}}); if(disttot[i].size() == d) disttot[i].push_back(1); else disttot[i][d]++; int j = treeind[depth[i]][npos]; if(dist[i][j].size() == d) dist[i][j].push_back(1); else dist[i][j][d]++; } } } return {dist, disttot}; } pair>>, vector>> dist_freq_ll(){ vector>> dist(n); vector> disttot(n); for(int i = 0; i < n; i++){ stack>> st; disttot[i] = {1}; dist[i].assign(childcnt[i], {0}); st.push({0, {i, -1}}); while(!st.empty()){ int d = st.top().first + 1; int pos = st.top().second.first; int bpos = st.top().second.second; st.pop(); for(auto npos:edges[pos]){ if(npos == bpos || depth[npos] < depth[i]) continue; st.push({d, {npos, pos}}); if(disttot[i].size() == d) disttot[i].push_back(1); else disttot[i][d]++; int j = treeind[depth[i]][npos]; if(dist[i][j].size() == d) dist[i][j].push_back(1); else dist[i][j][d]++; } } } return {dist, disttot}; } vector> cent_ind_dist(int u){ vector> ret; // uの親 + u の各重心の {頂点番号,何番目の部分木か,距離} ret.push_back({u, -1, 0}); for(int d = pars[u].size() - 1; d >= 0; d--){ ret.push_back({pars[u][d], treeind[d][u], cent_depth[d][u]}); } return ret; }; private: void dfs(int pos, int bpos, int d=0, int c=-1){ stack st; st.push(pos); stack route; int sz = 0; if(treeind.size() <= d) treeind.push_back(vector(n, -1)); if(cent_depth.size() <= d) cent_depth.push_back(vector(n, -1)); if(d != 0) cent_depth[d - 1][pos] = 1; while(!st.empty()){ int pos = st.top(); st.pop(); if(bpos != -1) pars[pos].push_back(bpos); depth[pos] = -2; route.push(pos); sz++; if(d >= 1) treeind[d - 1][pos] = c; for(auto npos:edges[pos]){ if(depth[npos] == -1){ st.push(npos); if(d != 0) cent_depth[d - 1][npos] = cent_depth[d - 1][pos] + 1; } } } int g = -1; while(!route.empty()){ int pos = route.top(); route.pop(); size[pos] = 1; depth[pos] = -1; bool isg = true; for(auto npos:edges[pos]){ if(depth[npos] == -1){ size[pos] += size[npos]; if(size[npos] * 2 > sz) isg = false; } } if(isg && 2 * size[pos] >= sz){ g = pos; } } if(centroids.size() == d) centroids.push_back({g}); else centroids[d].push_back(g); size[g] = sz; par[g] = bpos; depth[g] = d; cent_depth[d][g] = 0; if(sz != 1){ int c = 0; for(auto npos:edges[g]){ if(depth[npos] == -1) dfs(npos, g, d + 1, c++); } childcnt[g] = c; } } }; #line 2 "Library/C++/data_structure/BIT.hpp" template struct BIT{ int n; vector tree; BIT(int n): n(n){ tree.assign(n + 1, T(0)); } BIT(){} T _sum(int i){ i++; T res = T(0); while(i > 0){ res += tree[i]; i -= i & -i; } return res; } T sum(int l, int r){ return _sum(r - 1) - _sum(l - 1); } T sum(int r){ return _sum(r - 1); } T get(int i){ return _sum(i) - _sum(i - 1); } void add(int i, T x){ i++; while(i <= n){ tree[i] += x; i += i & -i; } } int lower_bound(T x){ int pos = 0; int plus = 1; while(plus * 2 <= n) plus *= 2; while(plus > 0){ if((pos + plus <= n) && (tree[pos + plus] < x)){ x -= tree[pos + plus]; pos += plus; } plus >>= 1; } return pos; } }; #line 239 "A.cpp" void solve(){ INT(n, Q); CentroidDecomposition G(n); G.read_edges(); G.build(); int logn = G.centroids.size(); vector> bit(logn, BIT(n)); vector> subbit(logn, BIT(2 * n)); vec(int, L, n); vec(int, subL, n); fori(d, logn){ int c = 0; int c2 = 0; for(auto g:G.centroids[d]){ L[g] = c; if(d != 0){ subL[g] = c2; } c += G.size[g]; c2 += G.size[g] + 1; } } auto add=[&](int x, int y, ll z){ int bg; for(auto [g, j, d]:G.cent_ind_dist(x)){ int dd = y - d; if(dd >= 0){ bit[G.depth[g]].add(L[g], z); bit[G.depth[g]].add(L[g] + min(dd + 1, G.size[g]), -z); if(j != -1){ subbit[G.depth[g]].add(subL[bg] + 1, z); subbit[G.depth[g]].add(subL[bg] + min(dd + 1, G.size[bg] + 1), -z); } } bg = g; } }; auto get=[&](int x){ int bg; ll ret = 0; for(auto [g, j, d]:G.cent_ind_dist(x)){ ret += bit[G.depth[g]].sum(L[g] + d + 1); if(j != -1) ret -= subbit[G.depth[g]].sum(subL[bg] + d + 1); bg = g; } return ret; }; fori(Q){ INT(x, y); x--; LL(z); print(get(x)); add(x, y, z); } } int main(){ cin.tie(0)->sync_with_stdio(0); // cout << fixed << setprecision(12); int t; t = 1; // cin >> t; while(t--) solve(); return 0; }