mod=998244353 M=(10**5)*3+1 fac=[1]*M ninv=[1]*M finv=[1]*M for i in range(2,M): fac[i]=fac[i-1]*i%mod ninv[i]=(-(mod//i)*ninv[mod%i])%mod finv[i]=finv[i-1]*ninv[i]%mod def binom(n,k): if n<0 or k<0: return 0 if k>n: return 0 return (fac[n]*finv[k]%mod)*finv[n-k]%mod import random hash=[random.randint(1,1<<60) for i in range(100)] memo={} def calc(R,k): if k<50: R=min(R,n*((1<<(k+1))-1)) if k==-1: return 1 if R^hash[k] in memo: return memo[R^hash[k]] x=1<>k)&1: for i in range(1,min(n+1,R//x+1),2): res+=calc(R-x*i,k-1)*binom(n,i)%mod else: for i in range(0,min(n+1,R//x+1),2): res+=calc(R-x*i,k-1)*binom(n,i)%mod res%=mod memo[R^hash[k]]=res return res n,b,z=map(int,input().split()) ans1=calc(b,59) ans2=calc(b-1,59) ans=(ans1-ans2) print(ans%mod)