#include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct Dinic { struct Edge { int dst, rev; T cap; explicit Edge(const int dst, const T cap, const int rev) : dst(dst), rev(rev), cap(cap) {} }; std::vector> graph; explicit Dinic(const int n) : graph(n), level(n), itr(n) {} void add_edge(const int src, const int dst, const T cap) { graph[src].emplace_back(dst, cap, graph[dst].size()); graph[dst].emplace_back(src, 0, graph[src].size() - 1); } T maximum_flow(const int s, const int t, T limit = std::numeric_limits::max()) { T res = 0; while (limit > 0) { std::fill(level.begin(), level.end(), -1); level[s] = 0; std::queue que; que.emplace(s); while (!que.empty()) { const int ver = que.front(); que.pop(); for (const Edge& e : graph[ver]) { if (level[e.dst] == -1 && e.cap > 0) { level[e.dst] = level[ver] + 1; que.emplace(e.dst); } } } if (level[t] == -1) break; std::fill(itr.begin(), itr.end(), 0); while (limit > 0) { const T f = dfs(s, t, limit); if (f == 0) break; limit -= f; res += f; } } return res; } private: std::vector level, itr; T dfs(const int ver, const int t, const T flow) { if (ver == t) return flow; for (; std::cmp_less(itr[ver], graph[ver].size()); ++itr[ver]) { Edge& e = graph[ver][itr[ver]]; if (level[ver] < level[e.dst] && e.cap > 0) { const T tmp = dfs(e.dst, t, std::min(flow, e.cap)); if (tmp > 0) { e.cap -= tmp; graph[e.dst][e.rev].cap += tmp; return tmp; } } } return 0; } }; int main() { int h, w; cin >> h >> w; vector s(h); REP(i, h) cin >> s[i]; vector ids(h, vector(w, -1)); int n = 0; REP(i, h) REP(j, w) { if (s[i][j] != '.') ids[i][j] = n++; } int r = 0; Dinic dinic(n + 2); const int src = n, dst = src + 1; REP(i, h) { vector row; REP(j, w) { if (s[i][j] == 'h') { dinic.add_edge(ids[i][j], dst, 1); row.emplace_back(j); } } ranges::reverse(row); int left = -1; REP(j, w) { if (!row.empty() && row.back() == j) { row.pop_back(); left = j; } if (s[i][j] == 'r') { ++r; dinic.add_edge(src, ids[i][j], 1); if (left != -1) dinic.add_edge(ids[i][j], ids[i][left], 1); if (!row.empty()) dinic.add_edge(ids[i][j], ids[i][row.back()], 1); } } } REP(j, w) { vector col; REP(i, h) { if (s[i][j] == 'h') col.emplace_back(i); } ranges::reverse(col); int up = -1; REP(i, h) { if (!col.empty() && col.back() == i) { col.pop_back(); up = i; } if (s[i][j] == 'r') { if (up != -1) dinic.add_edge(ids[i][j], ids[up][j], 1); if (!col.empty()) dinic.add_edge(ids[i][j], ids[col.back()][j], 1); } } } cout << (dinic.maximum_flow(src, dst, r) == r ? "Yes\n" : "No\n"); return 0; }