#line 2 "main.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/factorize" #line 2 "template.hpp" #include using namespace std; #define rep(i, N) for(int i=0;i<(N);i++) #define all(x) (x).begin(),(x).end() #define popcount(x) __builtin_popcount(x) using i128=__int128_t; using ll = long long; using ld = long double; using graph = vector>; using P = pair; constexpr int inf = 1e9; constexpr ll infl = 1e18; constexpr ld eps = 1e-6; constexpr long double pi = acos(-1); constexpr ll MOD = 1e9 + 7; constexpr ll MOD2 = 998244353; constexpr int dx[] = { 1,0,-1,0 }; constexpr int dy[] = { 0,1,0,-1 }; templateinline void chmax(T&x,T y){if(xinline void chmin(T&x,T y){if(x>y)x=y;} #line 2 "math/montgomery.hpp" class montgomery64 { using mint = montgomery64; using i64 = int64_t; using u64 = uint64_t; using u128 = __uint128_t; static u64 mod; static u64 r; static u64 n2; static u64 get_r() { u64 ret = mod; for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret; return ret; } public: static void set_mod(const u128& m) { assert(m < (i128(1) << 64)); assert((m & 1) == 1); mod = m; n2 = -u128(m) % m; r = get_r(); assert(r * mod == 1); } protected: u128 a; public: montgomery64() : a(0) {} template montgomery64(const T& b) : a(reduce((u128(b) + mod)* n2)) {}; private: template static u64 reduce(const T& b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; } public: template mint& operator=(const T& rhs) { return (*this) = mint(rhs); } mint& operator+=(const mint& b) { if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint& operator-=(const mint& b) { if (i64(a -= b.a) < 0) a += 2 * mod; return *this; } mint& operator*=(const mint& b) { a = reduce(u128(a) * b.a); return *this; } mint& operator/=(const mint& b) { *this *= b.inv(); return *this; } mint operator+(const mint& b) const { return mint(*this) += b; } mint operator-(const mint& b) const { return mint(*this) -= b; } mint operator*(const mint& b) const { return mint(*this) *= b; } mint operator/(const mint& b) const { return mint(*this) /= b; } bool operator==(const mint& b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint& b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint() - mint(*this); } mint pow(u128 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream& operator<<(ostream& os, const mint& b) { return os << b.val(); } friend istream& operator>>(istream& is, mint& b) { int64_t t; is >> t; b = montgomery64(t); return (is); } mint inv() const { return pow(mod - 2); } u64 val() const { u64 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static u64 get_mod() { return mod; } }; typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2; class ArbitraryModInt { using mint = ArbitraryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; using u128 = __uint128_t; static u32 mod; static u32 r; static u32 n2; static u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } public: static void set_mod(u32 m) { assert(m < (1ll << 31)); assert((m & 1) == 1); mod = m; n2 = -u64(m) % m; r = get_r(); assert(r * mod == 1); } protected: u128 a; public: ArbitraryModInt() : a(0) {} ArbitraryModInt(const int64_t& b) : a(reduce(u64(b% mod + mod)* n2)) {}; static u32 reduce(const u64& b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } mint& operator+=(const mint& b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint& operator-=(const mint& b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } mint& operator*=(const mint& b) { a = reduce(u64(a) * b.a); return *this; } mint& operator/=(const mint& b) { *this *= b.inv(); return *this; } mint operator+(const mint& b) const { return mint(*this) += b; } mint operator-(const mint& b) const { return mint(*this) -= b; } mint operator*(const mint& b) const { return mint(*this) *= b; } mint operator/(const mint& b) const { return mint(*this) /= b; } bool operator==(const mint& b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint& b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint() - mint(*this); } mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream& operator<<(ostream& os, const mint& b) { return os << b.val(); } friend istream& operator>>(istream& is, mint& b) { int64_t t; is >> t; b = ArbitraryModInt(t); return (is); } mint inv() const { return pow(mod - 2); } u32 val() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static u32 get_mod() { return mod; } }; typename ArbitraryModInt::u32 ArbitraryModInt::mod; typename ArbitraryModInt::u32 ArbitraryModInt::r; typename ArbitraryModInt::u32 ArbitraryModInt::n2; /// @brief Montgomery ///by https://nyaannyaan.github.io/library/modint/modint-montgomery64.hpp,https://nyaannyaan.github.io/library/modint/arbitrary-prime-modint.hpp #line 1 "math/mod_pow.hpp" template U mod_pow(T base, T exp, T mod){ if(base==0)return 0; T ans = 1; base %= mod; while (exp > 0) { if (exp & 1) { ans *= base; ans %= mod; } base *= base; base %= mod; exp >>= 1; } return ans; } ///@brief mod pow(バイナリ法) #line 4 "math/fast_prime_check.hpp" namespace prime { namespace miller{ using i128 = __int128_t; using u128 = __uint128_t; using u64 = __uint64_t; templatebool miller_rabin(u64 n, const u64 bases[], int siz){ if (mint::get_mod() != n){ mint::set_mod(n); } u64 d = n - 1; u64 q = __builtin_ctz(d); d >>= q; for(int i=0;i(n, bases_int, 3); } else { return miller_rabin(n, bases_ll, 7); } } }; }; using prime::miller::is_prime; ///@brief fast prime check(MillerRabinの素数判定法) int main() { int n; cin >> n; while (n--) { long long x; cin >> x; cout << x << ' ' << is_prime(x) << '\n'; } }