#include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; // constexpr int MOD = 998244353; constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct MInt { unsigned int v; MInt() : v(0) {} MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {} static constexpr int get_mod() { return M; } static void set_mod(const int divisor) { assert(divisor == M); } static void init(const int x) { inv(x); fact(x); fact_inv(x); } template static MInt inv(const int n) { // assert(0 <= n && n < M && std::gcd(n, M) == 1); static std::vector inverse{0, 1}; const int prev = inverse.size(); if (n < prev) return inverse[n]; if constexpr (MEMOIZES) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[M % i] * (M / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = M; b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector factorial{1}; const int prev = factorial.size(); if (n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector f_inv{1}; const int prev = f_inv.size(); if (n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) return 0; return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) return 0; inv(k); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } MInt& operator+=(const MInt& x) { if (std::cmp_greater_equal(v += x.v, M)) v -= M; return *this; } MInt& operator-=(const MInt& x) { if (std::cmp_greater_equal(v += M - x.v, M)) v -= M; return *this; } MInt& operator*=(const MInt& x) { v = static_cast(v) * x.v % M; return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } auto operator<=>(const MInt& x) const = default; MInt& operator++() { if (std::cmp_equal(++v, M)) v = 0; return *this; } MInt operator++(int) { const MInt res = *this; ++*this; return res; } MInt& operator--() { v = (v == 0 ? M - 1 : v - 1); return *this; } MInt operator--(int) { const MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(v ? M - v : 0); } MInt operator+(const MInt& x) const { return MInt(*this) += x; } MInt operator-(const MInt& x) const { return MInt(*this) -= x; } MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } }; using ModInt = MInt; void argument_sort(std::vector>* ps) { using Point = std::pair; std::vector orthant[4]{}; for (const Point& p : *ps) { if (p.second >= 0) { orthant[p.first >= 0 ? 2 : 3].emplace_back(p); } else { orthant[p.first >= 0].emplace_back(p); } } ps->clear(); for (int i = 0; i < 4; ++i) { if (i == 2) { std::sort(orthant[i].begin(), orthant[i].end(), [](const Point& a, const Point& b) -> bool { if (a.first == 0 && a.second == 0) { return !(b.first == 0 && b.second == 0); } if (b.first == 0 && b.second == 0) return false; return static_cast(a.first) * b.second - static_cast(a.second) * b.first > 0; }); } else { std::sort(orthant[i].begin(), orthant[i].end(), [](const Point& a, const Point& b) -> bool { return static_cast(a.first) * b.second - static_cast(a.second) * b.first > 0; }); } std::copy(orthant[i].begin(), orthant[i].end(), std::back_inserter(*ps)); } } __int128 abs(const __int128 x) { return x < 0 ? -x : x; } int main() { int n; cin >> n; vector> a; a.reserve(n); REP(_, n) { int a_i, b_i; cin >> a_i >> b_i; if (a_i == 0 && b_i == 0) continue; if (b_i < 0) a_i = -a_i, b_i = -b_i; a.emplace_back(a_i, b_i); } n = a.size(); if (n == 0) { cout << 1 << '\n'; return 0; } argument_sort(&a); vector p(n * 2, 0), q(n * 2, 0); REP(i, n) { p[i + 1] = p[i] + a[i].first; q[i + 1] = q[i] + a[i].second; } REP(i, n - 1) { p[n * 2 - 1 - i] = p[n * 2 - i] + a[n - 1 - i].first; q[n * 2 - 1 - i] = q[n * 2 - i] + a[n - 1 - i].second; } // REP(i, n * 2) cout << p[i] << ' ' << q[i] << '\n'; ModInt ans = gcd(p.back(), q.back()); FOR(i, 1, n * 2) ans += gcd(p[i] - p[i - 1], q[i] - q[i - 1]); ans = ans / 2 + 1; FOR(i, 2, n * 2) { ans += ModInt(abs(static_cast<__int128>(p[i]) * q[i - 1] - static_cast<__int128>(p[i - 1]) * q[i]) % MOD) / 2; } cout << ans << '\n'; return 0; }