#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math") #include using namespace std; #define rep(i, n) for (int i = 0; i < int(n); i++) #define per(i, n) for (int i = (n)-1; 0 <= i; i--) #define rep2(i, l, r) for (int i = (l); i < int(r); i++) #define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() template void print(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } using ll = long long; using pii = pair; using pll = pair; template bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template using minheap = std::priority_queue, std::greater>; template using maxheap = std::priority_queue; template int lb(const vector &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template int ub(const vector &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template void rearrange(vector &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } // __int128_t gcd(__int128_t a, __int128_t b) { // if (a == 0) // return b; // if (b == 0) // return a; // __int128_t cnt = a % b; // while (cnt != 0) { // a = b; // b = cnt; // cnt = a % b; // } // return b; // } long long extGCD(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extGCD(b, a % b, y, x); y -= a / b * x; return d; } struct UnionFind { vector data; int num; UnionFind(int sz) { data.assign(sz, -1); num = sz; } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return (false); if (data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; num--; return (true); } int find(int k) { if (data[k] < 0) return (k); return (data[k] = find(data[k])); } int size(int k) { return (-data[find(k)]); } bool same(int x, int y) { return find(x) == find(y); } int operator[](int k) { return find(k); } }; template struct Mod_Int { int x; Mod_Int() : x(0) { } Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) { } static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int(a); return is; } }; ll mpow2(ll x, ll n, ll mod) { ll ans = 1; x %= mod; while (n != 0) { if (n & 1) ans = ans * x % mod; x = x * x % mod; n = n >> 1; } ans %= mod; return ans; } ll modinv2(ll a, ll mod) { ll b = mod, u = 1, v = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= mod; if (u < 0) u += mod; return u; } ll divide_int(ll a, ll b) { if (b < 0) a = -a, b = -b; return (a >= 0 ? a / b : (a - b + 1) / b); } // const int MOD = 1000000007; const int MOD = 998244353; using mint = Mod_Int; mint mpow(mint x, ll n) { bool rev = n < 0; n = abs(n); mint ans = 1; while (n != 0) { if (n & 1) ans *= x; x *= x; n = n >> 1; } return (rev ? ans.inverse() : ans); } // ----- library ------- struct Montgomery_Mod_Int_64 { using u64 = uint64_t; using u128 = __uint128_t; static u64 mod; static u64 r; // m*r ≡ 1 (mod 2^64) static u64 n2; // 2^128 (mod mod) u64 x; Montgomery_Mod_Int_64() : x(0) {} Montgomery_Mod_Int_64(long long b) : x(reduce((u128(b) + mod) * n2)) {} static u64 get_r() { // mod 2^64 での逆元 u64 ret = mod; for (int i = 0; i < 5; i++) ret *= 2 - mod * ret; return ret; } static u64 get_mod() { return mod; } static void set_mod(u64 m) { assert(m < (1LL << 62)); assert((m & 1) == 1); mod = m; n2 = -u128(m) % m; r = get_r(); assert(r * mod == 1); } static u64 reduce(const u128 &b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; } Montgomery_Mod_Int_64 &operator+=(const Montgomery_Mod_Int_64 &p) { if ((x += p.x) >= 2 * mod) x -= 2 * mod; return *this; } Montgomery_Mod_Int_64 &operator-=(const Montgomery_Mod_Int_64 &p) { if ((x += 2 * mod - p.x) >= 2 * mod) x -= 2 * mod; return *this; } Montgomery_Mod_Int_64 &operator*=(const Montgomery_Mod_Int_64 &p) { x = reduce(u128(x) * p.x); return *this; } Montgomery_Mod_Int_64 &operator/=(const Montgomery_Mod_Int_64 &p) { *this *= p.inverse(); return *this; } Montgomery_Mod_Int_64 &operator++() { return *this += Montgomery_Mod_Int_64(1); } Montgomery_Mod_Int_64 operator++(int) { Montgomery_Mod_Int_64 tmp = *this; ++*this; return tmp; } Montgomery_Mod_Int_64 &operator--() { return *this -= Montgomery_Mod_Int_64(1); } Montgomery_Mod_Int_64 operator--(int) { Montgomery_Mod_Int_64 tmp = *this; --*this; return tmp; } Montgomery_Mod_Int_64 operator+(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) += p; }; Montgomery_Mod_Int_64 operator-(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) -= p; }; Montgomery_Mod_Int_64 operator*(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) *= p; }; Montgomery_Mod_Int_64 operator/(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) /= p; }; bool operator==(const Montgomery_Mod_Int_64 &p) const { return (x >= mod ? x - mod : x) == (p.x >= mod ? p.x - mod : p.x); }; bool operator!=(const Montgomery_Mod_Int_64 &p) const { return (x >= mod ? x - mod : x) != (p.x >= mod ? p.x - mod : p.x); }; Montgomery_Mod_Int_64 inverse() const { assert(*this != Montgomery_Mod_Int_64(0)); return pow(mod - 2); } Montgomery_Mod_Int_64 pow(long long k) const { Montgomery_Mod_Int_64 now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } u64 get() const { u64 ret = reduce(x); return ret >= mod ? ret - mod : ret; } friend ostream &operator<<(ostream &os, const Montgomery_Mod_Int_64 &p) { return os << p.get(); } friend istream &operator>>(istream &is, Montgomery_Mod_Int_64 &p) { long long a; is >> a; p = Montgomery_Mod_Int_64(a); return is; } }; typename Montgomery_Mod_Int_64::u64 Montgomery_Mod_Int_64::mod, Montgomery_Mod_Int_64::r, Montgomery_Mod_Int_64::n2; struct Random_Number_Generator { mt19937_64 mt; Random_Number_Generator() : mt(chrono::steady_clock::now().time_since_epoch().count()) {} int64_t operator()(int64_t l, int64_t r) { // 区間 [l,r) の整数で乱数発生 uniform_int_distribution dist(l, r - 1); return dist(mt); } int64_t operator()(int64_t r) { // 区間 [0,r) の整数で乱数発生 return (*this)(0, r); } } rng; bool Miller_Rabin(unsigned long long n, vector as) { using Mint = Montgomery_Mod_Int_64; if (Mint::get_mod() != n) Mint::set_mod(n); unsigned long long d = n - 1; while (!(d & 1)) d >>= 1; Mint e = 1, rev = n - 1; for (unsigned long long a : as) { if (n <= a) break; unsigned long long t = d; Mint y = Mint(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t <<= 1; } if (y != rev && (!(t & 1))) return false; } return true; } bool is_prime(unsigned long long n) { if (!(n & 1)) return n == 2; if (n <= 1) return false; if (n < (1LL << 30)) return Miller_Rabin(n, {2, 7, 61}); return Miller_Rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } unsigned long long Pollard_rho(unsigned long long n) { using Mint = Montgomery_Mod_Int_64; if (!(n & 1)) return 2; if (is_prime(n)) return n; if (Mint::get_mod() != n) Mint::set_mod(n); Mint R, one = 1; auto f = [&](Mint x) { return x * x + R; }; auto rnd = [&]() { return rng(n - 2) + 2; }; while (true) { Mint x, y, ys, q = one; R = rnd(), y = rnd(); unsigned long long g = 1; int m = 128; for (int r = 1; g == 1; r <<= 1) { x = y; for (int i = 0; i < r; i++) y = f(y); for (int k = 0; g == 1 && k < r; k += m) { ys = y; for (int i = 0; i < m && i < r - k; i++) q *= x - (y = f(y)); g = gcd(q.get(), n); } } if (g == n) { do { g = gcd((x - (ys = f(ys))).get(), n); } while (g == 1); } if (g != n) return g; } return 0; } vector factorize(unsigned long long n) { if (n <= 1) return {}; unsigned long long p = Pollard_rho(n); if (p == n) return {n}; auto l = factorize(p); auto r = factorize(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } vector> prime_factor(unsigned long long n) { auto ps = factorize(n); sort(begin(ps), end(ps)); vector> ret; for (auto &e : ps) { if (!ret.empty() && ret.back().first == e) { ret.back().second++; } else { ret.emplace_back(e, 1); } } return ret; } // ----- library ------- int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); cout << fixed << setprecision(15); int n, m; cin >> n >> m; vector a(n), b(m); rep(i, n) cin >> a[i]; rep(i, m) cin >> b[i]; if (a[0] != 1 || b[0] != 1) { cout << 1 << endl; return 0; } vector f(1e5, 0); rep(i, n) f[a[i]] = 1; rep(i, m) f[b[i]] = 1; auto in = [&](const vector &v, int x) { int ok = 0, ng = sz(v); while (ng - ok > 1) { int mid = (ok + ng) >> 1; (v[mid] * v[mid] <= x ? ok : ng) = mid; } return (v[ok] * v[ok] <= x && x < (v[ok] + 1) * (v[ok] + 1)); }; rep2(p, 1, 1e5) { if (!f[p]) { rep2(t, p * p, (p + 1) * (p + 1)) { auto ds = factorize(t); bool ok = false; each(d, ds) { if (in(a, d) && in(b, t / d)) { ok = true; break; } } if (!ok) { cout << t << endl; return 0; } } } } exit(1); }