package main import ( "bufio" "fmt" "math/bits" "os" ) func main() { // https://yukicoder.me/problems/no/880 in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, q int fmt.Fscan(in, &n, &q) nums := make([]E, n) for i := 0; i < n; i++ { var tmp int fmt.Fscan(in, &tmp) nums[i] = NewE(tmp) } seg := NewSegmentTreeBeats(nums) for i := 0; i < q; i++ { var t, l, r, x int fmt.Fscan(in, &t, &l, &r) l-- if t <= 2 { fmt.Fscan(in, &x) if t == 1 { seg.Update(l, r, Id{updVal: x}) // RangeAssign } else { seg.Update(l, r, Id{gcdVal: x}) // RangeUpdateGcd } } else { res := seg.Query(l, r) if t == 3 { fmt.Fprintln(out, res.max) // RangeMax } else { fmt.Fprintln(out, res.sum) // RangeSum } } } } const INF int = 2e9 type E struct { sum, max, lcm, size int fail bool } func NewE(v int) E { return E{ sum: v, max: v, lcm: v, size: 1, } } type Id struct{ updVal, gcdVal int } func (*SegmentTreeBeats) e() E { return E{lcm: 1} } func (*SegmentTreeBeats) id() Id { return Id{} } func (*SegmentTreeBeats) op(x, y E) E { return E{ sum: x.sum + y.sum, max: max(x.max, y.max), lcm: min(lcm(x.lcm, y.lcm), INF), size: x.size + y.size, } } func (*SegmentTreeBeats) mapping(f Id, x E) E { if f.updVal != 0 { return E{ sum: f.updVal * x.size, max: f.updVal, lcm: f.updVal, size: x.size, fail: true, } } if f.gcdVal != 0 { if x.size == 1 { v := gcd(x.max, f.gcdVal) return E{ sum: v, max: v, lcm: v, size: 1, fail: true, } } else if f.gcdVal%x.lcm != 0 { x.fail = true // !Special } } return x } func (*SegmentTreeBeats) composition(f, g Id) Id { if f.updVal != 0 { return f } if g.updVal != 0 { return Id{updVal: gcd(g.updVal, f.gcdVal)} } return Id{gcdVal: gcd(f.gcdVal, g.gcdVal)} } func max(a, b int) int { if a > b { return a } return b } func min(a, b int) int { if a < b { return a } return b } func gcd(a, b int) int { for b != 0 { a, b = b, a%b } return a } func lcm(a, b int) int { return a * b / gcd(a, b) } // // // // // !template type SegmentTreeBeats struct { n int log int size int data []E lazy []Id } func NewSegmentTreeBeats( leaves []E, ) *SegmentTreeBeats { tree := &SegmentTreeBeats{} n := int(len(leaves)) tree.n = n tree.log = int(bits.Len(uint(n - 1))) tree.size = 1 << tree.log tree.data = make([]E, 2*tree.size) tree.lazy = make([]Id, tree.size) for i := range tree.data { tree.data[i] = tree.e() } for i := range tree.lazy { tree.lazy[i] = tree.id() } for i := 0; i < n; i++ { tree.data[tree.size+i] = leaves[i] } for i := tree.size - 1; i >= 1; i-- { tree.pushUp(i) } return tree } // 查询切片[left:right]的值 // 0<=left<=right<=len(tree.data) func (tree *SegmentTreeBeats) Query(left, right int) E { if left < 0 { left = 0 } if right > tree.n { right = tree.n } if left >= right { return tree.e() } left += tree.size right += tree.size for i := tree.log; i >= 1; i-- { if ((left >> i) << i) != left { tree.pushDown(left >> i) } if ((right >> i) << i) != right { tree.pushDown((right - 1) >> i) } } sml, smr := tree.e(), tree.e() for left < right { if left&1 != 0 { sml = tree.op(sml, tree.data[left]) left++ } if right&1 != 0 { right-- smr = tree.op(tree.data[right], smr) } left >>= 1 right >>= 1 } return tree.op(sml, smr) } func (tree *SegmentTreeBeats) QueryAll() E { return tree.data[1] } // 更新切片[left:right]的值 // 0<=left<=right<=len(tree.data) func (tree *SegmentTreeBeats) Update(left, right int, f Id) { if left < 0 { left = 0 } if right > tree.n { right = tree.n } if left >= right { return } left += tree.size right += tree.size for i := tree.log; i >= 1; i-- { if ((left >> i) << i) != left { tree.pushDown(left >> i) } if ((right >> i) << i) != right { tree.pushDown((right - 1) >> i) } } l2, r2 := left, right for left < right { if left&1 != 0 { tree.propagate(left, f) left++ } if right&1 != 0 { right-- tree.propagate(right, f) } left >>= 1 right >>= 1 } left = l2 right = r2 for i := 1; i <= tree.log; i++ { if ((left >> i) << i) != left { tree.pushUp(left >> i) } if ((right >> i) << i) != right { tree.pushUp((right - 1) >> i) } } } // 二分查询最小的 left 使得切片 [left:right] 内的值满足 predicate func (tree *SegmentTreeBeats) MinLeft(right int, predicate func(data E) bool) int { if right == 0 { return 0 } right += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown((right - 1) >> i) } res := tree.e() for { right-- for right > 1 && right&1 != 0 { right >>= 1 } if !predicate(tree.op(tree.data[right], res)) { for right < tree.size { tree.pushDown(right) right = right*2 + 1 if predicate(tree.op(tree.data[right], res)) { res = tree.op(tree.data[right], res) right-- } } return right + 1 - tree.size } res = tree.op(tree.data[right], res) if (right & -right) == right { break } } return 0 } // 二分查询最大的 right 使得切片 [left:right] 内的值满足 predicate func (tree *SegmentTreeBeats) MaxRight(left int, predicate func(data E) bool) int { if left == tree.n { return tree.n } left += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown(left >> i) } res := tree.e() for { for left%2 == 0 { left >>= 1 } if !predicate(tree.op(res, tree.data[left])) { for left < tree.size { tree.pushDown(left) left *= 2 if predicate(tree.op(res, tree.data[left])) { res = tree.op(res, tree.data[left]) left++ } } return left - tree.size } res = tree.op(res, tree.data[left]) left++ if (left & -left) == left { break } } return tree.n } // 单点查询(不需要 pushUp/op 操作时使用) func (tree *SegmentTreeBeats) Get(index int) E { index += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown(index >> i) } return tree.data[index] } // 单点赋值 func (tree *SegmentTreeBeats) Set(index int, e E) { index += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown(index >> i) } tree.data[index] = e for i := 1; i <= tree.log; i++ { tree.pushUp(index >> i) } } func (tree *SegmentTreeBeats) pushUp(root int) { tree.data[root] = tree.op(tree.data[2*root], tree.data[2*root+1]) } func (tree *SegmentTreeBeats) pushDown(root int) { if tree.lazy[root] != tree.id() { tree.propagate(2*root, tree.lazy[root]) tree.propagate(2*root+1, tree.lazy[root]) tree.lazy[root] = tree.id() } } func (tree *SegmentTreeBeats) propagate(root int, f Id) { tree.data[root] = tree.mapping(f, tree.data[root]) if root < tree.size { tree.lazy[root] = tree.composition(f, tree.lazy[root]) // !Special if tree.data[root].fail { tree.pushDown(root) tree.pushUp(root) } } }