package main import ( "bufio" "fmt" "math/bits" "os" ) func 区间最短距离和() { // https://yukicoder.me/problems/no/924 // n,q<=2e5 // -1e9 <= nums[i] <= 1e9 // 给定n个查询[l,r] // !求区间[l,r]中位数到区间[l,r]中每个数的距离之和 // !也就求函数 f(x)= ∑|nums[i]-x| (l<=i<=right) 的最小值 // !区间中位数 in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, q int fmt.Fscan(in, &n, &q) OFFSET := int(1e9 + 10) nums := make([]int, n) for i := range nums { fmt.Fscan(in, &nums[i]) nums[i] += OFFSET } preSum := make([]int, n+1) for i := range nums { preSum[i+1] = preSum[i] + nums[i] } wm := NewWaveletMatrixSum(nums, 32+2) for i := 0; i < q; i++ { var left, right int fmt.Fscan(in, &left, &right) left-- n := right - left lowerCount := n / 2 ceilCount := n - lowerCount mid, lowerSum := wm.Kth(left, right, lowerCount, 0) _, allSum := wm.Kth(left, right, n, 0) ceilSum := allSum - lowerSum res := 0 res += mid*lowerCount - lowerSum res += ceilSum - mid*ceilCount fmt.Fprintln(out, res) } } func main() { // nums := []int{3, 1, 2, 4, 5, 6, 7, 8, 9, 10} // wm := NewWaveletMatrixSum(nums, 32) // fmt.Println(wm.MaxRightValue(0, 10, 0, func(preSum E) bool { return preSum < 11 })) // 5 即值域在 [0,5) 中的数的和小于 11 // fmt.Println(wm.MaxRightCount(0, 10, 0, func(preSum E) bool { return preSum < 11 })) // 4 即排序后前 4 个数的和小于 11 // fmt.Println(wm.Ceil(0, 10, 3, 0)) in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n int fmt.Fscan(in, &n) nums := make([]int, n) for i := 0; i < n; i++ { fmt.Fscan(in, &nums[i]) } M := NewWaveletMatrixSum(nums, 32) var q int fmt.Fscan(in, &q) for i := 0; i < q; i++ { var left, right, x int fmt.Fscan(in, &left, &right, &x) left-- res := INF lower := M.Floor(left, right, x, 0) // 小于等于x的最大值 if lower != -INF { res = min(res, abs(lower-x)) } higher := M.Ceil(left, right, x, 0) // 大于等于x的最小值 if higher != INF { res = min(res, abs(higher-x)) } fmt.Fprintln(out, res) } } func min(a, b int) int { if a < b { return a } return b } const INF int = 1e18 type E = int func (*WaveletMatrixSum) e() E { return 0 } func (*WaveletMatrixSum) op(a, b E) E { return a + b } func (*WaveletMatrixSum) inv(a E) E { return -a } type WaveletMatrixSum struct { n, log int mid []int bv []*BitVector preSum [][]int } func NewWaveletMatrixSum(nums []int, log int) *WaveletMatrixSum { nums = append(nums[:0:0], nums...) res := &WaveletMatrixSum{} n := len(nums) mid := make([]int, log) bv := make([]*BitVector, log) for i := 0; i < log; i++ { bv[i] = NewBitVector(n) } preSum := make([][]int, log+1) for i := range preSum { preSum[i] = make([]int, n+1) for j := range preSum[i] { preSum[i][j] = res.e() } } a0, a1 := make([]int, n), make([]int, n) for d := log - 1; d >= -1; d-- { p0, p1 := 0, 0 for i := 0; i < n; i++ { preSum[d+1][i+1] = res.op(preSum[d+1][i], nums[i]) } if d == -1 { break } for i := 0; i < n; i++ { f := (nums[i] >> d) & 1 if f == 0 { a0[p0] = nums[i] p0++ } else { bv[d].Set(i) a1[p1] = nums[i] p1++ } } mid[d] = p0 bv[d].Build() nums, a0 = a0, nums for i := 0; i < p1; i++ { nums[p0+i] = a1[i] } } res.n, res.log = n, log res.mid, res.bv, res.preSum = mid, bv, preSum return res } // 返回区间 [left, right) 中 范围在 [a, b) 中的 (元素的个数, op 的结果) func (wm *WaveletMatrixSum) Count(left, right, a, b, xor int) (int, E) { c1, s1 := wm.CountPrefix(left, right, a, xor) c2, s2 := wm.CountPrefix(left, right, b, xor) return c2 - c1, wm.op(wm.inv(s1), s2) } // 返回区间 [left, right) 中 范围在 [0, x) 中的 (元素的个数, op 的结果) func (wm *WaveletMatrixSum) CountPrefix(left, right, x, xor int) (int, E) { if x >= 1<= 0; d-- { add := (x >> d) & 1 f := (xor >> d) & 1 l0, r0 := wm.bv[d].Rank(left, 0), wm.bv[d].Rank(right, 0) var kf int if f == 0 { kf = r0 - l0 } else { kf = (right - left) - (r0 - l0) } if add == 1 { count += kf if f == 1 { sum = wm.op(sum, wm.get(d, left+wm.mid[d]-l0, right+wm.mid[d]-r0)) left, right = l0, r0 } else { sum = wm.op(sum, wm.get(d, l0, r0)) left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0 } } else { if f == 0 { left, right = l0, r0 } else { left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0 } } } return count, sum } // 返回区间 [left, right) 中的 (第k小的元素, 前k个元素(不包括第k小的元素) 的 op 的结果) // 如果k < 0, 返回 (-1, 0); 如果k >= right-left, 返回 (-1, 区间 op 的结果) func (wm *WaveletMatrixSum) Kth(left, right, k, xor int) (int, E) { if k < 0 { return -1, 0 } if right-left <= k { return -1, wm.get(wm.log, left, right) } res, sum := 0, wm.e() for d := wm.log - 1; d >= 0; d-- { f := (xor >> d) & 1 l0, r0 := wm.bv[d].Rank(left, 0), wm.bv[d].Rank(right, 0) var kf int if f == 0 { kf = r0 - l0 } else { kf = (right - left) - (r0 - l0) } if k < kf { if f == 0 { left, right = l0, r0 } else { left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0 } } else { k -= kf res |= 1 << d if f == 1 { sum = wm.op(sum, wm.get(d, left+wm.mid[d]-l0, right+wm.mid[d]-r0)) left, right = l0, r0 } else { sum = wm.op(sum, wm.get(d, l0, r0)) left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0 } } } if k != 0 { sum = wm.op(sum, wm.get(0, left, left+k)) } return res, sum } // 返回使得 check(prefixSum) 为 true 的最大值 val. // !(即区间内小于 val 的数的和 prefixSum 满足 check函数, 找到这样的最大的 val) // 如果整个区间都满足, 返回 INF. // eg: val = 5 => 即区间内值域在 [0,5) 中的数的和满足 check 函数. func (wm *WaveletMatrixSum) MaxRightValue(left, right, xor int, check func(preSum E) bool) E { if check(wm.get(wm.log, left, right)) { return INF } res := 0 sum := wm.e() for d := wm.log - 1; d >= 0; d-- { f := (xor >> d) & 1 l0, r0 := wm.bv[d].Rank(left, 0), wm.bv[d].Rank(right, 0) var loSum E if f == 0 { loSum = wm.get(d, l0, r0) } else { loSum = wm.get(d, left+wm.mid[d]-l0, right+wm.mid[d]-r0) } if check(wm.op(sum, loSum)) { sum = wm.op(sum, loSum) res |= 1 << d if f == 1 { left, right = l0, r0 } else { left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0 } } else { if f == 0 { left, right = l0, r0 } else { left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0 } } } return res } // 返回使得 check(prefixSum) 为 true 的区间前缀个数的最大值. // eg: count = 4 => 即区间内的数排序后, 前4个数的和满足 check 函数. func (wm *WaveletMatrixSum) MaxRightCount(left, right, xor int, check func(preSum E) bool) int { if check(wm.get(wm.log, left, right)) { return right - left } res := 0 sum := wm.e() for d := wm.log - 1; d >= 0; d-- { f := (xor >> d) & 1 l0, r0 := wm.bv[d].Rank(left, 0), wm.bv[d].Rank(right, 0) var kf int var loSum E if f == 0 { kf = r0 - l0 loSum = wm.get(d, l0, r0) } else { kf = (right - left) - (r0 - l0) loSum = wm.get(d, left+wm.mid[d]-l0, right+wm.mid[d]-r0) } if check(wm.op(sum, loSum)) { sum = wm.op(sum, loSum) res += kf if f == 1 { left, right = l0, r0 } else { left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0 } } else { if f == 0 { left, right = l0, r0 } else { left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0 } } } res += wm.binarySearch(func(k int) bool { return check(wm.op(sum, wm.get(0, left, left+k))) }, 0, right-left) return res } // [left, right) 中小于等于 x 的数中最大的数 // 如果不存在则返回-INF func (w *WaveletMatrixSum) Floor(start, end, value, xor int) int { less, _ := w.CountPrefix(start, end, value, xor) if less == 0 { return -INF } res, _ := w.Kth(start, end, less-1, xor) return res } // [left, right) 中大于等于 x 的数中最小的数 // 如果不存在则返回INF func (w *WaveletMatrixSum) Ceil(start, end, value, xor int) int { less, _ := w.CountPrefix(start, end, value, xor) if less == end-start { return INF } res, _ := w.Kth(start, end, less, xor) return res } func (wm *WaveletMatrixSum) binarySearch(f func(E) bool, ok, ng int) int { for abs(ok-ng) > 1 { x := (ok + ng) >> 1 if f(x) { ok = x } else { ng = x } } return ok } func (wm *WaveletMatrixSum) get(d, l, r int) E { return wm.op(wm.inv(wm.preSum[d][l]), wm.preSum[d][r]) } func abs(a int) int { if a < 0 { return -a } return a } type BitVector struct { data [][2]int } func NewBitVector(n int) *BitVector { return &BitVector{data: make([][2]int, (n+63)>>5)} } func (bv *BitVector) Set(i int) { bv.data[i>>5][0] |= 1 << (i & 31) } func (bv *BitVector) Build() { for i := 0; i < len(bv.data)-1; i++ { bv.data[i+1][1] = bv.data[i][1] + bits.OnesCount(uint(bv.data[i][0])) } } // [0, k) 内の 1 の個数 func (bv *BitVector) Rank(k int, f int) int { a, b := bv.data[k>>5][0], bv.data[k>>5][1] ret := b + bits.OnesCount(uint(a&((1<<(k&31))-1))) if f == 1 { return ret } return k - ret }