package main import ( "bufio" "fmt" "os" ) func main() { // https://yukicoder.me/problems/no/1813 // 不等关系:有向边 // 给定一个DAG 求将DAG变为一个环(强连通分量)的最少需要添加的边数 // !答案为 `max(入度为0的点的个数, 出度为0的点的个数)` in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, m int fmt.Fscan(in, &n, &m) scc := NewStronglyConnectedComponents(n) for i := 0; i < m; i++ { var u, v int fmt.Fscan(in, &u, &v) scc.AddEdge(u-1, v-1, 1) } scc.Build() if len(scc.Group) == 1 { // 缩成一个点了,说明是强连通的 fmt.Fprintln(out, 0) return } g := len(scc.Group) indeg, outDeg := make([]int, g), make([]int, g) for i := 0; i < g; i++ { for _, next := range scc.Dag[i] { indeg[next]++ outDeg[i]++ } } in0, out0 := 0, 0 for i := 0; i < g; i++ { if indeg[i] == 0 { in0++ } if outDeg[i] == 0 { out0++ } } fmt.Fprintln(out, max(in0, out0)) } func max(a, b int) int { if a > b { return a } return b } type WeightedEdge struct{ from, to, cost, index int } type StronglyConnectedComponents struct { G [][]WeightedEdge // 原图 Dag [][]int // 强连通分量缩点后的DAG(有向图邻接表) CompId []int // 每个顶点所属的强连通分量的编号 Group [][]int // 每个强连通分量所包含的顶点 rg [][]WeightedEdge order []int used []bool eid int } func NewStronglyConnectedComponents(n int) *StronglyConnectedComponents { return &StronglyConnectedComponents{G: make([][]WeightedEdge, n)} } func (scc *StronglyConnectedComponents) AddEdge(from, to, cost int) { scc.G[from] = append(scc.G[from], WeightedEdge{from, to, cost, scc.eid}) scc.eid++ } func (scc *StronglyConnectedComponents) Build() { scc.rg = make([][]WeightedEdge, len(scc.G)) for i := range scc.G { for _, e := range scc.G[i] { scc.rg[e.to] = append(scc.rg[e.to], WeightedEdge{e.to, e.from, e.cost, e.index}) } } scc.CompId = make([]int, len(scc.G)) for i := range scc.CompId { scc.CompId[i] = -1 } scc.used = make([]bool, len(scc.G)) for i := range scc.G { scc.dfs(i) } for i, j := 0, len(scc.order)-1; i < j; i, j = i+1, j-1 { scc.order[i], scc.order[j] = scc.order[j], scc.order[i] } ptr := 0 for _, v := range scc.order { if scc.CompId[v] == -1 { scc.rdfs(v, ptr) ptr++ } } dag := make([][]int, ptr) visited := make(map[int]struct{}) // 边去重 for i := range scc.G { for _, e := range scc.G[i] { x, y := scc.CompId[e.from], scc.CompId[e.to] if x == y { continue // 原来的边 x->y 的顶点在同一个强连通分量内,可以汇合同一个 SCC 的权值 } hash := x*len(scc.G) + y if _, ok := visited[hash]; !ok { dag[x] = append(dag[x], y) visited[hash] = struct{}{} } } } scc.Dag = dag scc.Group = make([][]int, ptr) for i := range scc.G { scc.Group[scc.CompId[i]] = append(scc.Group[scc.CompId[i]], i) } } // 获取顶点k所属的强连通分量的编号 func (scc *StronglyConnectedComponents) Get(k int) int { return scc.CompId[k] } func (scc *StronglyConnectedComponents) dfs(idx int) { tmp := scc.used[idx] scc.used[idx] = true if tmp { return } for _, e := range scc.G[idx] { scc.dfs(e.to) } scc.order = append(scc.order, idx) } func (scc *StronglyConnectedComponents) rdfs(idx int, cnt int) { if scc.CompId[idx] != -1 { return } scc.CompId[idx] = cnt for _, e := range scc.rg[idx] { scc.rdfs(e.to, cnt) } }