#pragma region Macros #pragma GCC target("avx,avx2,fma") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include using namespace std; using namespace __gnu_pbds; // using namespace __gnu_cxx; // #include // namespace mp = boost::multiprecision; // using Bint = mp::cpp_int; #define TO_STRING(var) # var #define pb emplace_back #define int ll #define endl '\n' using ll = long long; using ld = long double; const ld PI = acos(-1); const ld EPS = 1e-10; const int INF = 1 << 30; const ll INFL = 1LL << 61; const int MOD = 998244353; // const int MOD = 1000000007; __attribute__((constructor)) void constructor() { ios::sync_with_stdio(false); cin.tie(nullptr); // ifstream in("input.txt"); // cin.rdbuf(in.rdbuf()); cout << fixed << setprecision(15); } class UnionFind { public: UnionFind() = default; UnionFind(int n) : par(n), sz(n, 1) { iota(par.begin(), par.end(), 0); } int root(int x) { if (par[x] == x) return x; return (par[x] = root(par[x])); } bool unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return false; if (sz[rx] < sz[ry]) swap(rx, ry); sz[rx] += sz[ry]; par[ry] = rx; return true; } bool issame(int x, int y) { return (root(x) == root(y)); } int size(int x) { return sz[root(x)]; } int get_sum(int x) { return sum[root(x)]; } vector> groups(int n) { vector> G(n); for (int x = 0; x < n; x++) { G[root(x)].push_back(x); } G.erase( remove_if(G.begin(), G.end(), [&](const vector& v) { return v.empty(); }), G.end()); return G; } private: vector par; vector sz; vector sum; }; template class modint{ public: int val = 0; modint(int x = 0) { while (x < 0) x += mod; val = x % mod; } modint(const modint &r) { val = r.val; } modint operator -() { return modint(-val); } modint operator +(const modint &r) { return modint(*this) += r; } modint operator +(const int &q) {modint r(q); return modint(*this) += r; } modint operator -(const modint &r) { return modint(*this) -= r; } modint operator -(const int &q) {modint r(q); return modint(*this) -= r; } modint operator *(const modint &r) { return modint(*this) *= r; } modint operator *(const int &q) {modint r(q); return modint(*this) *= r; } modint operator /(const modint &r) { return modint(*this) /= r; } modint operator /(const int &q) {modint r(q); return modint(*this) /= r; } modint &operator +=(const modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; } modint &operator -=(const modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; } modint &operator *=(const modint &r) { val = val * r.val % mod; return *this; } modint &operator /=(const modint &r) { int a = r.val, b = mod, u = 1, v = 0; while (b) { int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } val = val * u % mod; if (val < 0) val += mod; return *this; } bool operator ==(const modint& r) { return this -> val == r.val; } bool operator <(const modint& r) { return this -> val < r.val; } bool operator !=(const modint& r) { return this -> val != r.val; } }; using mint = modint; istream &operator >>(istream &is, mint& x) { int t; is >> t; x = t; return (is); } ostream &operator <<(ostream &os, const mint& x) { return os << x.val; } mint modpow(const mint &a, int n) { if (n == 0) return 1; mint t = modpow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } int modpow(int x, int n, int mod) { int ret = 1; while (n > 0) { if (n % 2 == 1) ret = ret * x % mod; x = x * x % mod; n /= 2; } return ret; } int POW(int x, int y) { if (y != (int)(y) or y < 0 or x != 0 && x != 1 && y > 64) {cout << "Error" << endl;return 0;} if (y == 0) return 1; if (y % 2 == 0) return POW(x * x, y / 2); return x * POW(x, y - 1); } int ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); } #pragma endregion signed main() { int N, M; cin >> N >> M; vector X(N); for (int i = 0; i < N; i++) cin >> X[i]; vector Y(M); for (int i = 0; i < M; i++) cin >> Y[i]; sort(Y.begin(),Y.end()); for (int i = 0; i < N; i++) { auto it = lower_bound(Y.begin(),Y.end(), X[i]); if (it == Y.end()) cout << "Infinity" << endl; else cout << *it - X[i] << endl; } }