using System; using System.Collections.Generic; using System.IO; using System.Linq; using static System.Math; using System.Text; using System.Threading; using System.Globalization; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using Library; namespace Program { public static class ProblemB { static bool SAIKI = false; static public int numberOfRandomCases = 0; static public void MakeTestCase(List _input, List _output, ref Func _outputChecker) { } static public void Solve() { var N = NN; var AList = NNList(N); var BList = NNList(N); var set = new LIB_RedBlackTree<(long max, long half, long min), (long pos, long max, long half, long min)>(); for (var i = 0; i < N; ++i) { var max = Max(AList[i], BList[i]); var min = Min(AList[i], BList[i]); var half = (max + min) / 2; set.Add((max, half, min), (0, max, half, min)); } var ans = long.MaxValue; Func<(long, long, long, long), long> get = vv => vv.Item1 == 0 ? vv.Item2 : vv.Item1 == 1 ? vv.Item3 : vv.Item4; while (true) { var max = set.Max(); var min = set.Min(); ans.Chmin(get(max.Value) - get(min.Value)); set.Remove(max.Key); var nextvalue = max.Value; nextvalue.pos++; var nextkey = (0L, 0L, 0L); if (nextvalue.pos == 1) nextkey = (max.Value.half, max.Value.min, 0L); if (nextvalue.pos == 2) nextkey = (max.Value.min, 0L, 0L); if (nextvalue.pos == 3) break; set.Add(nextkey, nextvalue); } Console.WriteLine(ans); } class Printer : StreamWriter { public override IFormatProvider FormatProvider { get { return CultureInfo.InvariantCulture; } } public Printer(Stream stream) : base(stream, new UTF8Encoding(false, true)) { base.AutoFlush = false; } public Printer(Stream stream, Encoding encoding) : base(stream, encoding) { base.AutoFlush = false; } } static LIB_FastIO fastio = new LIB_FastIODebug(); static string[] args; static public void Main(string[] args_t) { args = args_t; if (args_t.Length == 0) { fastio = new LIB_FastIO(); Console.SetOut(new Printer(Console.OpenStandardOutput())); } if (SAIKI) { var t = new Thread(Solve, 134217728); t.Start(); t.Join(); } else Solve(); Console.Out.Flush(); } static long NN => fastio.Long(); static double ND => fastio.Double(); static string NS => fastio.Scan(); static long[] NNList(long N) => Repeat(0, N).Select(_ => NN).ToArray(); static double[] NDList(long N) => Repeat(0, N).Select(_ => ND).ToArray(); static string[] NSList(long N) => Repeat(0, N).Select(_ => NS).ToArray(); static long Count(this IEnumerable x, Func pred) => Enumerable.Count(x, pred); static IEnumerable Repeat(T v, long n) => Enumerable.Repeat(v, (int)n); static IEnumerable Range(long s, long c) => Enumerable.Range((int)s, (int)c); static IOrderedEnumerable OrderByRand(this IEnumerable x) => Enumerable.OrderBy(x, _ => xorshift); static IOrderedEnumerable OrderBy(this IEnumerable x) => Enumerable.OrderBy(x.OrderByRand(), e => e); static IOrderedEnumerable OrderBy(this IEnumerable x, Func selector) => Enumerable.OrderBy(x.OrderByRand(), selector); static IOrderedEnumerable OrderByDescending(this IEnumerable x) => Enumerable.OrderByDescending(x.OrderByRand(), e => e); static IOrderedEnumerable OrderByDescending(this IEnumerable x, Func selector) => Enumerable.OrderByDescending(x.OrderByRand(), selector); static IOrderedEnumerable OrderBy(this IEnumerable x) => x.OrderByRand().OrderBy(e => e, StringComparer.OrdinalIgnoreCase); static IOrderedEnumerable OrderBy(this IEnumerable x, Func selector) => x.OrderByRand().OrderBy(selector, StringComparer.OrdinalIgnoreCase); static IOrderedEnumerable OrderByDescending(this IEnumerable x) => x.OrderByRand().OrderByDescending(e => e, StringComparer.OrdinalIgnoreCase); static IOrderedEnumerable OrderByDescending(this IEnumerable x, Func selector) => x.OrderByRand().OrderByDescending(selector, StringComparer.OrdinalIgnoreCase); static string Join(this IEnumerable x, string separator = "") => string.Join(separator, x); static uint xorshift { get { _xsi.MoveNext(); return _xsi.Current; } } static IEnumerator _xsi = _xsc(); static IEnumerator _xsc() { uint x = 123456789, y = 362436069, z = 521288629, w = (uint)(DateTime.Now.Ticks & 0xffffffff); while (true) { var t = x ^ (x << 11); x = y; y = z; z = w; w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); yield return w; } } static bool Chmax(this ref T lhs, T rhs) where T : struct, IComparable { if (lhs.CompareTo(rhs) < 0) { lhs = rhs; return true; } return false; } static bool Chmin(this ref T lhs, T rhs) where T : struct, IComparable { if (lhs.CompareTo(rhs) > 0) { lhs = rhs; return true; } return false; } static void Fill(this T[] array, T value) => array.AsSpan().Fill(value); static void Fill(this T[,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0], array.Length).Fill(value); static void Fill(this T[,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0], array.Length).Fill(value); static void Fill(this T[,,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0, 0], array.Length).Fill(value); } } namespace Library { class LIB_RedBlackTree { static public LIB_RedBlackTree CreateRangeUpdateRangeMin() => new LIB_RedBlackTree(long.MaxValue, long.MinValue + 100, Math.Min, (x, y, c) => y, (x, y) => y); static public LIB_RedBlackTree CreateRangeAddRangeMin() => new LIB_RedBlackTree(long.MaxValue, 0, Math.Min, (x, y, c) => x + y, (x, y) => x + y); static public LIB_RedBlackTree CreateRangeUpdateRangeMax() => new LIB_RedBlackTree(long.MinValue, long.MaxValue - 100, Math.Max, (x, y, c) => y, (x, y) => y); static public LIB_RedBlackTree CreateRangeAddRangeMax() => new LIB_RedBlackTree(long.MinValue, 0, Math.Max, (x, y, c) => x + y, (x, y) => x + y); static public LIB_RedBlackTree CreateRangeUpdateRangeSum() => new LIB_RedBlackTree(0, long.MaxValue, (x, y) => x + y, (x, y, c) => y * c, (x, y) => y); static public LIB_RedBlackTree CreateRangeAddRangeSum() => new LIB_RedBlackTree(0, 0, (x, y) => x + y, (x, y, c) => x + y * c, (x, y) => x + y); } class LIB_RedBlackTree where ValueE : IEquatable { bool ope; class Node { public Node left; public Node right; public Key key; public ValueT val; public ValueT dat; public ValueE lazy; public bool isBlack; public int cnt; public bool needRecalc; } Func f; Func g; Func h; ValueT ti; ValueE ei; Comparison c; Node root; bool isNeedFix; Node lmax; [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree(ValueT ti, ValueE ei, Func f, Func g, Func h, Comparison c, bool ope = true) { this.ti = ti; this.ei = ei; this.f = f; this.g = g; this.h = h; this.c = c; this.ope = ope; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree(ValueT ti, ValueE ei, Func f, Func g, Func h) : this(ti, ei, f, g, h, Comparer.Default.Compare) { } [MethodImpl(MethodImplOptions.AggressiveInlining)] bool IsRed(Node n) => n != null && !n.isBlack; [MethodImpl(MethodImplOptions.AggressiveInlining)] bool IsBlack(Node n) => n != null && n.isBlack; [MethodImpl(MethodImplOptions.AggressiveInlining)] int Cnt(Node n) => n == null ? 0 : n.cnt; [MethodImpl(MethodImplOptions.AggressiveInlining)] void Eval(Node n) { if (n == null || ei.Equals(n.lazy)) return; n.val = g(n.val, n.lazy, 1); if (!n.needRecalc) n.dat = g(n.dat, n.lazy, Cnt(n)); if (n.left != null) n.left.lazy = h(n.left.lazy, n.lazy); if (n.right != null) n.right.lazy = h(n.right.lazy, n.lazy); n.lazy = ei; } void Recalc(Node n) { Eval(n); if (!n.needRecalc) return; n.needRecalc = false; n.dat = n.val; if (n.left != null) { Recalc(n.left); n.dat = f(n.left.dat, n.dat); } if (n.right != null) { Recalc(n.right); n.dat = f(n.dat, n.right.dat); } } Node RotateL(Node n) { if (ope && n != null) { Eval(n); Eval(n.right); } Node m = n.right, t = m.left; m.left = n; n.right = t; n.cnt -= m.cnt - Cnt(t); m.cnt += n.cnt - Cnt(t); n.needRecalc = true; m.needRecalc = true; return m; } Node RotateR(Node n) { if (ope && n != null) { Eval(n); Eval(n.left); } Node m = n.left, t = m.right; m.right = n; n.left = t; n.cnt -= m.cnt - Cnt(t); m.cnt += n.cnt - Cnt(t); n.needRecalc = true; m.needRecalc = true; return m; } Node RotateLR(Node n) { n.left = RotateL(n.left); return RotateR(n); } Node RotateRL(Node n) { n.right = RotateR(n.right); return RotateL(n); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Add(Key key, ValueT val) { root = Add(root, key, val); root.isBlack = true; } Node Add(Node n, Key key, ValueT val) { if (n == null) { isNeedFix = true; return new Node() { key = key, val = val, dat = val, lazy = ei, cnt = 1 }; } if (ope) Eval(n); if (c(key, n.key) < 0) n.left = Add(n.left, key, val); else n.right = Add(n.right, key, val); n.needRecalc = true; ++n.cnt; return Balance(n); } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node Balance(Node n) { if (!isNeedFix || !IsBlack(n)) return n; if (IsRed(n.left) && IsRed(n.left.left)) { n = RotateR(n); n.left.isBlack = true; } else if (IsRed(n.left) && IsRed(n.left.right)) { n = RotateLR(n); n.left.isBlack = true; } else if (IsRed(n.right) && IsRed(n.right.left)) { n = RotateRL(n); n.right.isBlack = true; } else if (IsRed(n.right) && IsRed(n.right.right)) { n = RotateL(n); n.right.isBlack = true; } else isNeedFix = false; return n; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void RemoveAt(long index) { root = RemoveAt(root, index); if (root != null) root.isBlack = true; } Node RemoveAt(Node n, long index) { if (ope) Eval(n); --n.cnt; var r = index.CompareTo(Cnt(n?.left)); if (r < 0) { n.left = RemoveAt(n.left, index); n.needRecalc = true; return BalanceL(n); } if (r > 0) { n.right = RemoveAt(n.right, index - Cnt(n?.left) - 1); n.needRecalc = true; return BalanceR(n); } if (n.left == null) { isNeedFix = n.isBlack; return n.right; } n.left = RemoveMax(n.left); n.key = lmax.key; n.val = lmax.val; n.needRecalc = true; return BalanceL(n); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Remove(Key key) { root = Remove(root, key); if (root != null) root.isBlack = true; } Node Remove(Node n, Key key) { if (ope) Eval(n); --n.cnt; var r = c(key, n.key); if (r < 0) { n.left = Remove(n.left, key); n.needRecalc = true; return BalanceL(n); } if (r > 0) { n.right = Remove(n.right, key); n.needRecalc = true; return BalanceR(n); } if (n.left == null) { isNeedFix = n.isBlack; return n.right; } n.left = RemoveMax(n.left); n.key = lmax.key; n.val = lmax.val; n.needRecalc = true; return BalanceL(n); } Node RemoveMax(Node n) { if (ope) Eval(n); --n.cnt; if (n.right != null) { n.right = RemoveMax(n.right); n.needRecalc = true; return BalanceR(n); } lmax = n; isNeedFix = n.isBlack; return n.left; } Node BalanceL(Node n) { if (!isNeedFix) return n; if (IsBlack(n.right) && IsRed(n.right.left)) { var b = n.isBlack; n = RotateRL(n); n.isBlack = b; n.left.isBlack = true; isNeedFix = false; } else if (IsBlack(n.right) && IsRed(n.right.right)) { var b = n.isBlack; n = RotateL(n); n.isBlack = b; n.right.isBlack = true; n.left.isBlack = true; isNeedFix = false; } else if (IsBlack(n.right)) { isNeedFix = n.isBlack; n.isBlack = true; n.right.isBlack = false; } else { n = RotateL(n); n.isBlack = true; n.left.isBlack = false; n.left = BalanceL(n.left); isNeedFix = false; } return n; } Node BalanceR(Node n) { if (!isNeedFix) return n; if (IsBlack(n.left) && IsRed(n.left.right)) { var b = n.isBlack; n = RotateLR(n); n.isBlack = b; n.right.isBlack = true; isNeedFix = false; } else if (IsBlack(n.left) && IsRed(n.left.left)) { var b = n.isBlack; n = RotateR(n); n.isBlack = b; n.left.isBlack = true; n.right.isBlack = true; isNeedFix = false; } else if (IsBlack(n.left)) { isNeedFix = n.isBlack; n.isBlack = true; n.left.isBlack = false; } else { n = RotateR(n); n.isBlack = true; n.right.isBlack = false; n.right = BalanceR(n.right); isNeedFix = false; } return n; } public KeyValuePair this[long i] { [MethodImpl(MethodImplOptions.AggressiveInlining)] get { return At(root, i); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void ChangeValue(long i, ValueT v) { var n = root; while (true) { if (ope) Eval(n); if (n.left == null) { if (i == 0) break; else { n = n.right; --i; } } else if (n.left.cnt == i) break; else if (n.left.cnt > i) n = n.left; else { i = i - n.left.cnt - 1; n = n.right; } } n.needRecalc = true; n.val = v; } KeyValuePair At(Node n, long i) { while (true) { if (ope) Eval(n); if (n.left == null) { if (i == 0) return new KeyValuePair(n.key, n.val); else { n = n.right; --i; } } else if (n.left.cnt == i) return new KeyValuePair(n.key, n.val); else if (n.left.cnt > i) n = n.left; else { i = i - n.left.cnt - 1; n = n.right; } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool ContainsKey(Key key) { var t = LowerBound(key); return t < Cnt(root) && c(At(root, t).Key, key) == 0; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long UpperBound(Key key) { var n = root; var ret = 0L; while (true) { if (n == null) return ret; if (c(key, n.key) < 0) n = n.left; else { ret += Cnt(n.left) + 1; n = n.right; } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long LowerBound(Key key) { var n = root; var ret = 0L; while (true) { if (n == null) return ret; if (c(key, n.key) <= 0) n = n.left; else { ret += Cnt(n.left) + 1; n = n.right; } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public KeyValuePair Min() { Node n = root.left, p = root; while (n != null) { p = n; if (ope) Eval(p); n = n.left; } return new KeyValuePair(p.key, p.val); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public KeyValuePair Max() { Node n = root.right, p = root; while (n != null) { p = n; if (ope) Eval(p); n = n.right; } return new KeyValuePair(p.key, p.val); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Update(long l, long r, ValueE val) => Update(root, l, r, val); void Update(Node n, long l, long r, ValueE val) { if (n == null) return; Eval(n); n.needRecalc = true; var lc = Cnt(n.left); if (lc < l) Update(n.right, l - lc - 1, r - lc - 1, val); else if (r <= lc) Update(n.left, l, r, val); else if (l <= 0 && Cnt(n) <= r) n.lazy = val; else { n.val = g(n.val, val, 1); if (l < lc) Update(n.left, l, lc, val); if (lc + 1 < r) Update(n.right, 0, r - lc - 1, val); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public ValueT Query(long l, long r) => root == null ? ti : Query(root, l, r); ValueT Query(Node n, long l, long r) { var v1 = ti; var v2 = ti; var v3 = ti; Eval(n); var lc = Cnt(n.left); if (lc < l) v3 = n.right == null ? ti : Query(n.right, l - lc - 1, r - lc - 1); else if (r <= lc) v1 = n.left == null ? ti : Query(n.left, l, r); else if (l <= 0 && Cnt(n) <= r) { Recalc(n); v2 = n.dat; } else { if (l < lc) v1 = n.left == null ? ti : Query(n.left, l, lc); if (lc + 1 < r) v3 = n.right == null ? ti : Query(n.right, 0, r - lc - 1); v2 = n.val; } return f(f(v1, v2), v3); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Any() => root != null; public long Count => Cnt(root); [MethodImpl(MethodImplOptions.AggressiveInlining)] public IEnumerable> List() => L(root); [MethodImpl(MethodImplOptions.AggressiveInlining)] IEnumerable> L(Node n) { if (n == null) yield break; foreach (var i in L(n.left)) yield return i; yield return new KeyValuePair(n.key, n.val); foreach (var i in L(n.right)) yield return i; } } class LIB_RedBlackTree { LIB_RedBlackTree tree; [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree(Comparison c) { tree = new LIB_RedBlackTree(default(Value), 0, null, null, null, c, false); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree() : this(Comparer.Default.Compare) { } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Add(Key key, Value val) => tree.Add(key, val); [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Remove(Key key) => tree.Remove(key); [MethodImpl(MethodImplOptions.AggressiveInlining)] public void RemoveAt(long index) => tree.RemoveAt(index); public KeyValuePair this[long i] { [MethodImpl(MethodImplOptions.AggressiveInlining)] get { return tree[i]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool ContainsKey(Key key) => tree.ContainsKey(key); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long UpperBound(Key key) => tree.UpperBound(key); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long LowerBound(Key key) => tree.LowerBound(key); [MethodImpl(MethodImplOptions.AggressiveInlining)] public KeyValuePair Min() => tree.Min(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public KeyValuePair Max() => tree.Max(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Any() => tree.Any(); public long Count => tree.Count; [MethodImpl(MethodImplOptions.AggressiveInlining)] public IEnumerable> List() => tree.List(); } class LIB_RedBlackTree { LIB_RedBlackTree tree; [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree(Comparison c) { tree = new LIB_RedBlackTree(0, 0, null, null, null, c, false); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree() : this(Comparer.Default.Compare) { } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Add(T val) => tree.Add(val, 0); [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Remove(T val) => tree.Remove(val); [MethodImpl(MethodImplOptions.AggressiveInlining)] public void RemoveAt(long index) => tree.RemoveAt(index); public T this[long i] { [MethodImpl(MethodImplOptions.AggressiveInlining)] get { return tree[i].Key; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool ContainsKey(T val) => tree.ContainsKey(val); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long UpperBound(T val) => tree.UpperBound(val); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long LowerBound(T val) => tree.LowerBound(val); [MethodImpl(MethodImplOptions.AggressiveInlining)] public T Min() => tree.Min().Key; [MethodImpl(MethodImplOptions.AggressiveInlining)] public T Max() => tree.Max().Key; [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Any() => tree.Any(); public long Count => tree.Count; [MethodImpl(MethodImplOptions.AggressiveInlining)] public IEnumerable List() => tree.List().Select(e => e.Key); } class LIB_FastIO { [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_FastIO() { str = Console.OpenStandardInput(); } readonly Stream str; readonly byte[] buf = new byte[2048]; int len, ptr; [MethodImpl(MethodImplOptions.AggressiveInlining)] byte read() { if (ptr >= len) { ptr = 0; if ((len = str.Read(buf, 0, 2048)) <= 0) { return 0; } } return buf[ptr++]; } [MethodImpl(MethodImplOptions.AggressiveInlining)] char Char() { byte b = 0; do b = read(); while (b < 33 || 126 < b); return (char)b; } [MethodImpl(MethodImplOptions.AggressiveInlining)] virtual public string Scan() { var sb = new StringBuilder(); for (var b = Char(); b >= 33 && b <= 126; b = (char)read()) sb.Append(b); return sb.ToString(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] virtual public long Long() { long ret = 0; byte b = 0; var ng = false; do b = read(); while (b != '-' && (b < '0' || '9' < b)); if (b == '-') { ng = true; b = read(); } for (; true; b = read()) { if (b < '0' || '9' < b) return ng ? -ret : ret; else ret = (ret << 3) + (ret << 1) + b - '0'; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] virtual public double Double() { return double.Parse(Scan(), CultureInfo.InvariantCulture); } } class LIB_FastIODebug : LIB_FastIO { Queue param = new Queue(); [MethodImpl(MethodImplOptions.AggressiveInlining)] string NextString() { if (param.Count == 0) foreach (var item in Console.ReadLine().Split(' ')) param.Enqueue(item); return param.Dequeue(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_FastIODebug() { } [MethodImpl(MethodImplOptions.AggressiveInlining)] public override string Scan() => NextString(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public override long Long() => long.Parse(NextString()); [MethodImpl(MethodImplOptions.AggressiveInlining)] public override double Double() => double.Parse(NextString()); } }