''' 三分探索の抽象化ライブラリ domain:= 定義域が整数(0)or実数(1) searchtype:= 狭義に凹で最大値を求めたい(0)or狭義に凸で最小値を求めたい(1) f:= 最大または最小にしたい値を返す l,r:= 探索範囲(l<=r) eps:= 誤差(整数なら2,実数なら誤差指定による) iter:= 探索回数 op1:= 割り算の演算子 op2:= 反転させるかどうか(0の時反転) op3:= 出力での反転 value:= 三分探索の解 args:= fの引数(iterable)…f(i,args)という形でargsを展開 ''' from operator import floordiv,truediv,truth,not_ from math import log class ternary_search: def __init__(self,domain,searchtype,f,l,r,eps,args=None): self.domain=domain self.searchtype=searchtype self.f=f self.l,self.r=l,r self.iter=int(log((r+1-l)/eps,1.5))+5 self.args=args self.op1=[floordiv,truediv][domain] self.op2=[not_,truth][searchtype] self.op3=[max,min][searchtype] self.value=self.calc() def calc(self): for _ in range(self.iter): diff=self.op1(self.r-self.l,3) trisection1=self.l+diff trisection2=self.r-diff trisection1_value=self.f(trisection1,self.args) trisection2_value=self.f(trisection2,self.args) if self.op2(trisection1_value<=trisection2_value): self.r=trisection2 if self.op2(trisection1_value>=trisection2_value): self.l=trisection1 return self.op3([self.l,self.l+self.op1(self.r-self.l,2),self.r],key=lambda x:self.f(x,self.args)) N = int(input()) A = list(map(int, input().split())) B = list(map(int, input().split())) def f(x,arg): ma = 0 mi = 10**9 for a,b in zip(A,B): v = max(a,b,(a+b)//2) if a>=x and v>a: v=a if b>=x and v>b: v=b if (a+b)//2>=x and v>(a+b)//2: v=(a+b)//2 ma = max(ma,v) mi = min(mi,v) return ma-mi e=ternary_search(0,1,f,0,10**9,2) print(f(f(e.value,None),None))