#include using namespace atcoder; #include using namespace std; // #include #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rep2(i,a,b) for (int i = (int)(a); i < (int)(b); i++) #define all(v) v.begin(),v.end() #define inc(x,l,r) ((l)<=(x)&&(x)<(r)) #define Unique(x) sort(all(x)), x.erase(unique(all(x)), x.end()) #define pcnt __builtin_popcountll typedef long long ll; #define int ll using ld = long double; using vi = vector; using vs = vector; using P = pair; using vp = vector

; // using Bint = boost::multiprecision::cpp_int; template bool chmax(T1 &a, const T2 b) {if (a < b) {a = b; return true;} else return false; } template bool chmin(T1 &a, const T2 b) {if (a > b) {a = b; return true;} else return false; } template using priority_queue_greater = priority_queue, greater>; template ostream &operator<<(ostream &os,const vector &v){rep(i,v.size())os< istream &operator>>(istream& is,vector &v){for(T &in:v)is>>in;return is;} template ostream &operator<< (ostream &os, const pair &p){os << p.first <<" "<> (istream &is, modint1000000007 &m){ll in;is>>in;m=in;return is;} ostream &operator<< (ostream &os, const modint998244353 &m){os << m.val();return os;} istream &operator>> (istream &is, modint998244353 &m){ll in;is>>in;m=in;return is;} template void input(T&... a){(cin>> ... >> a);} template void print(T& a){cout < void print(const T&a, const Ts&... b){cout<< a;(cout<<...<<(cout<<' ',b));cout<<'\n';} #define VI(v,n) vi v(n); input(v) #define INT(...) int __VA_ARGS__; input(__VA_ARGS__) #define STR(...) string __VA_ARGS__; input(__VA_ARGS__) #define CHAR(...) char __VA_ARGS__; input(__VA_ARGS__) int sign(ll x){return x>0?1:x<0?-1:0;} ll ceil(ll x,ll y){assert(y!=0);if(sign(x)==sign(y))return (x+y-1)/y;return -((-x/y));} ll floor(ll x,ll y){assert(y!=0);if(sign(x)==sign(y))return x/y;if(y<0)x*=-1,y*=-1;return x/y-(x%y<0);} ll abs(ll x,ll y){return abs(x-y);} ll bit(int n){return 1ll< f_(10000001,-1),g_(10000001,-1); int f(int n){ if(n==0)return -1; if(f_[n]!=-1)return f_[n]; int c = 2,j = 2; int k1 = n/j; while(k1>1){ int j2 = n/k1+1; c += (j2-j)*(2*f(k1)+1); j = j2; k1 = n/j2; } return f_[n]=(n*(n-1)-c+j)/2; } int g(int n){ if(n==0)return 0; if(g_[n]!=-1)return g_[n]; int c = 2,j = 2; int k1 = n/j; while(k1>1){ int j2 = n/k1+1; c += (j2-j)*(k1*(k1-1)+1-2*(g(k1))); j = j2; k1 = n/j2; } return g_[n]=(c-j)/2; } void naive(int n){ int G[n][n]; rep(i,n)rep(j,n)G[i][j]=gcd(i+1,j+1); rep(i,n)G[i][i]=0; rep(k,n)rep(i,n)rep(j,n)chmin(G[i][j],G[i][k]+G[k][j]); int res = 0; vi cnt(3); rep(i,n)rep(j,i){ res+=G[i][j]; cnt[G[i][j]]++; } // rep(i,n)for(int j=i+1;j