#line 2 "library/KowerKoint/stl-expansion.hpp" #include template std::istream& operator>>(std::istream& is, std::pair& p) { is >> p.first >> p.second; return is; } template std::istream& operator>>(std::istream& is, std::array& a) { for (size_t i = 0; i < N; ++i) { is >> a[i]; } return is; } template std::istream& operator>>(std::istream& is, std::vector& v) { for (auto& e : v) is >> e; return is; } template std::ostream& operator<<(std::ostream& os, const std::pair& p) { os << p.first << " " << p.second; return os; } template std::ostream& operator<<(std::ostream& os, const std::array& a) { for (size_t i = 0; i < N; ++i) { os << a[i] << (i + 1 == a.size() ? "" : " "); } return os; } template std::ostream& operator<<(std::ostream& os, const std::vector& v) { for (size_t i = 0; i < v.size(); ++i) { os << v[i] << (i + 1 == v.size() ? "" : " "); } return os; } #line 3 "library/KowerKoint/base.hpp" using namespace std; #define REP(i, n) for(int i = 0; i < (int)(n); i++) #define FOR(i, a, b) for(ll i = a; i < (ll)(b); i++) #define ALL(a) (a).begin(),(a).end() #define RALL(a) (a).rbegin(),(a).rend() #define END(...) { print(__VA_ARGS__); return; } using VI = vector; using VVI = vector; using VVVI = vector; using ll = long long; using VL = vector; using VVL = vector; using VVVL = vector; using ull = unsigned long long; using VUL = vector; using VVUL = vector; using VVVUL = vector; using VD = vector; using VVD = vector; using VVVD = vector; using VS = vector; using VVS = vector; using VVVS = vector; using VC = vector; using VVC = vector; using VVVC = vector; using P = pair; using VP = vector

; using VVP = vector; using VVVP = vector; using LP = pair; using VLP = vector; using VVLP = vector; using VVVLP = vector; template using PQ = priority_queue; template using GPQ = priority_queue, greater>; constexpr int INF = 1001001001; constexpr ll LINF = 1001001001001001001ll; constexpr int DX[] = {1, 0, -1, 0}; constexpr int DY[] = {0, 1, 0, -1}; void print() { cout << '\n'; } template void print(const T &t) { cout << t << '\n'; } template void print(const Head &head, const Tail &... tail) { cout << head << ' '; print(tail...); } #ifdef DEBUG void dbg() { cerr << '\n'; } template void dbg(const T &t) { cerr << t << '\n'; } template void dbg(const Head &head, const Tail &... tail) { cerr << head << ' '; dbg(tail...); } #else template void dbg(const Args &... args) {} #endif template vector> split(typename vector::const_iterator begin, typename vector::const_iterator end, T val) { vector> res; vector cur; for(auto it = begin; it != end; it++) { if(*it == val) { res.push_back(cur); cur.clear(); } else cur.push_back(*it); } res.push_back(cur); return res; } vector split(typename string::const_iterator begin, typename string::const_iterator end, char val) { vector res; string cur = ""; for(auto it = begin; it != end; it++) { if(*it == val) { res.push_back(cur); cur.clear(); } else cur.push_back(*it); } res.push_back(cur); return res; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template pair> compress(const vector &a) { int n = a.size(); vector x; REP(i, n) x.push_back(a[i]); sort(ALL(x)); x.erase(unique(ALL(x)), x.end()); VI res(n); REP(i, n) res[i] = lower_bound(ALL(x), a[i]) - x.begin(); return make_pair(res, x); } template auto rle(It begin, It end) { vector> res; if(begin == end) return res; auto pre = *begin; int num = 1; for(auto it = begin + 1; it != end; it++) { if(pre != *it) { res.emplace_back(pre, num); pre = *it; num = 1; } else num++; } res.emplace_back(pre, num); return res; } template vector> rle_sort(It begin, It end) { vector cloned(begin, end); sort(ALL(cloned)); auto e = rle(ALL(cloned)); sort(ALL(e), [](const auto& l, const auto& r) { return l.second < r.second; }); return e; } template pair, vector> factorial(int n) { vector res(n+1), rev(n+1); res[0] = 1; REP(i, n) res[i+1] = res[i] * (i+1); rev[n] = 1 / res[n]; for(int i = n; i > 0; i--) { rev[i-1] = rev[i] * i; } return make_pair(res, rev); } #line 3 "library/KowerKoint/integer/extgcd.hpp" constexpr ll extgcd(ll a, ll b, ll& x, ll& y) { x = 1, y = 0; ll nx = 0, ny = 1; while(b) { ll q = a / b; ll r = a % b; a = b, b = r; ll nnx = x - q * nx; ll nny = y - q * ny; x = nx, nx = nnx; y = ny, ny = nny; } return a; } #line 3 "library/KowerKoint/integer/pow-mod.hpp" constexpr ll inv_mod(ll n, ll m) { n %= m; if (n < 0) n += m; ll x = -1, y = -1; if(extgcd(n, m, x, y) != 1) throw logic_error(""); x %= m; if(x < 0) x += m; return x; } constexpr ll pow_mod(ll a, ll n, ll m) { if(n == 0) return 1LL; if(n < 0) return inv_mod(pow_mod(a, -n, m), m); a %= m; if (a < 0) n += m; ll res = 1; while(n) { if(n & 1) { res *= a; res %= m; } n >>= 1; a *= a; a %= m; } return res; } #line 3 "library/KowerKoint/algebra/field.hpp" template struct SumGroupBase { constexpr static bool defzero = false; using Coef = nullptr_t; using Scalar = nullptr_t; }; template struct ProdGroupBase { constexpr static bool defone = false; }; template struct RepresentationBase { using R = T; constexpr static T construct(const R& x) { return x; } constexpr static R represent(const T& x) { return x; } }; template struct CompareBase { constexpr static bool eq(const T& x, const T& y) { return x == y; } constexpr static bool lt(const T& x, const T& y) { return x < y; } }; template struct FinitePropertyBase { constexpr static bool is_finite = false; }; template , typename ProdGroup = ProdGroupBase, typename Representation = RepresentationBase, typename Compare = CompareBase, typename FiniteProperty = FinitePropertyBase> struct Field { using R = typename Representation::R; using Coef = typename SumGroup::Coef; using Scalar = typename SumGroup::Scalar; T val; constexpr static Field zero() { return SumGroup::zero; } constexpr static Field one() { return ProdGroup::one; } constexpr static bool defzero = SumGroup::defzero; constexpr static bool defone = ProdGroup::defone; constexpr static bool is_finite = FiniteProperty::is_finite; constexpr Field() { if constexpr(SumGroup::defzero) val = SumGroup::zero; else if constexpr(SumGroup::defone) val = ProdGroup::one; else val = T(); } constexpr Field(const R& r) : val(Representation::construct(r)) {} constexpr R represent() const { return Representation::represent(val); } constexpr decltype(auto) operator[](size_t i) const { return val[i]; } constexpr static Field premitive_root() { return FiniteProperty::premitive_root(); } constexpr static size_t order() { return FiniteProperty::order(); } constexpr Field& operator*=(const Field& other) { ProdGroup::mulassign(val, other.val); return *this; } constexpr Field operator*(const Field& other) const { return Field(*this) *= other; } constexpr Field inv() const { return ProdGroup::inv(val); } constexpr Field& operator/=(const Field& other) { return *this *= other.inv(); } constexpr Field operator/(const Field& other) const { return Field(*this) /= other; } constexpr Field pow(ll n) const { if(n < 0) { return inv().pow(-n); } Field res = one(); Field a = *this; while(n > 0) { if(n & 1) res *= a; a *= a; n >>= 1; } return res; } constexpr Field operator+() const { return *this; } constexpr Field& operator+=(const Field& other) { SumGroup::addassign(val, other.val); return *this; } constexpr Field operator+(const Field& other) const { return Field(*this) += other; } constexpr Field operator-() const { return SumGroup::minus(val); } constexpr Field& operator-=(const Field& other) { return *this += -other; } constexpr Field operator-(const Field& other) const { return Field(*this) -= other; } constexpr Field& operator++() { return *this += one(); } Field operator++(int) { Field ret = *this; ++*this; return ret; } constexpr Field& operator--() { return *this -= one(); } Field operator--(int) { Field ret = *this; --*this; return ret; } constexpr Field& operator*=(const Coef& other) { SumGroup::coefassign(val, other); return *this; } constexpr Field operator*(const Coef& other) const { return Field(*this) *= other; } constexpr Scalar dot(const Field& other) const { return SumGroup::dot(val, other.val); } constexpr Scalar norm() const { return dot(*this); } constexpr bool operator==(const Field& other) const { return Compare::eq(val, other.val); } constexpr bool operator!=(const Field& other) const { return !(*this == other); } constexpr bool operator<(const Field& other) const { return Compare::lt(represent(), other.represent()); } constexpr bool operator>(const Field& other) const { return other < *this; } constexpr bool operator<=(const Field& other) const { return !(*this > other); } constexpr bool operator>=(const Field& other) const { return !(*this < other); } friend istream& operator>>(istream& is, Field& f) { R r; is >> r; f = r; return is; } friend ostream& operator<<(ostream& os, const Field& f) { return os << f.represent(); } }; namespace std { template struct hash> { size_t operator()(const Field& f) const { return hash::R>()(f.represent()); } }; } template struct is_field : false_type {}; template struct is_field> : true_type {}; template constexpr bool is_field_v = is_field::value; template constexpr T zero() { if constexpr(is_field_v) return T::zero(); else return 0; } template constexpr T one() { if constexpr(is_field_v) return T::one(); else return 1; } template constexpr bool is_finite() { if constexpr(is_field_v) return T::is_finite; else return false; } #line 4 "library/KowerKoint/algebra/modint.hpp" template struct SumGroupModint : SumGroupBase { static ll& addassign(ll& l, const ll& r) { ll ret; if(__builtin_add_overflow(l, r, &ret)) { l = l % mod + r % mod; } else { l = ret; } return l; } constexpr static bool defzero = true; constexpr static ll zero = 0; constexpr static ll minus(const ll& x) { return -x; } }; template struct ProdGroupModint : ProdGroupBase { constexpr static bool defmul = true; static ll& mulassign(ll& l, const ll& r) { ll ret; if(__builtin_mul_overflow(l, r, &ret)) { l = (l % mod) * (r % mod); } else { l = ret; } return l; } constexpr static bool defone = true; constexpr static ll one = 1; constexpr static bool definv = true; constexpr static ll inv(const ll& x) { return inv_mod(x, mod); } }; template struct RepresentationModint : RepresentationBase { using R = ll; constexpr static ll construct(const R& x) { return x % mod; } constexpr static R represent(const ll& x) { ll ret = x % mod; if(ret < 0) ret += mod; return ret; } }; template struct CompareModint : CompareBase { constexpr static bool lt(const ll& l, const ll& r) { return RepresentationModint::represent(l) < RepresentationModint::represent(r); } constexpr static bool eq(const ll& l, const ll& r) { return RepresentationModint::represent(l) == RepresentationModint::represent(r); } }; template struct FinitePropertyModint : FinitePropertyBase { constexpr static bool is_finite = true; constexpr static ll premitive_root() { static_assert(mod == 998244353); return 3; } constexpr static size_t order() { return mod - 1; } }; template using Modint = Field, ProdGroupModint, RepresentationModint, CompareModint, FinitePropertyModint>; using MI3 = Modint<998244353>; using V3 = vector; using VV3 = vector; using VVV3 = vector; using MI7 = Modint<1000000007>; using V7 = vector; using VV7 = vector; using VVV7 = vector; #line 3 "library/KowerKoint/counting/counting.hpp" template struct Counting { vector fact, ifact; Counting() {} Counting(ll n) { assert(n >= 0); expand(n); } void expand(ll n) { assert(n >= 0); ll sz = (ll)fact.size(); if(sz > n) return; fact.resize(n+1); ifact.resize(n+1); fact[0] = 1; FOR(i, max(1LL, sz), n+1) fact[i] = fact[i-1] * i; ifact[n] = fact[n].inv(); for(ll i = n-1; i >= sz; i--) ifact[i] = ifact[i+1] * (i+1); } T p(ll n, ll r) { if(n < r) return 0; assert(r >= 0); expand(n); return fact[n] * ifact[n-r]; } T c(ll n, ll r) { if(n < r) return 0; assert(r >= 0); expand(n); return fact[n] * ifact[r] * ifact[n-r]; } T h(ll n, ll r) { assert(n >= 0); assert(r >= 0); return c(n+r-1, r); } T stirling(ll n, ll k) { if(n < k) return 0; assert(k >= 0); if(n == 0) return 1; T res = 0; T sign = k%2? -1 : 1; expand(k); REP(i, k+1) { res += sign * ifact[i] * ifact[k-i] * T(i).pow(n); sign *= -1; } return res; } vector> stirling_table(ll n, ll k) { assert(n >= 0 && k >= 0); vector> res(n+1, vector(k+1)); res[0][0] = 1; FOR(i, 1, n+1) FOR(j, 1, k+1) { res[i][j] = res[i-1][j-1] + j * res[i-1][j]; } return res; } T bell(ll n, ll k) { assert(n >= 0 && k >= 0); expand(k); vector tmp(k+1); T sign = 1; tmp[0] = 1; FOR(i, 1, k+1) { sign *= -1; tmp[i] = tmp[i-1] + sign * ifact[i]; } T res = 0; REP(i, k+1) { res += T(i).pow(n) * ifact[i] * tmp[k-i]; } return res; } vector> partition_table(ll n, ll k) { assert(n >= 0 && k >= 0); vector> res(n+1, vector(k+1)); REP(i, k+1) res[0][i] = 1; FOR(i, 1, n+1) FOR(j, 1, k+1) { res[i][j] = res[i][j-1] + (i struct UnionFindData { GroupValue_ group_value; bool vertex_value_determined; VertexValue_ vertex_value; VertexValueCoef_ a; VertexValue_ b; }; template<> struct UnionFindData { }; template struct UnionFindData { bool vertex_value_determined; VertexValue_ vertex_value; VertexValue_ b; }; template struct UnionFindData { bool vertex_value_determined; VertexValue_ vertex_value; VertexValueCoef_ a; VertexValue_ b; }; template struct UnionFindData { GroupValue_ group_value; }; template struct UnionFindData { GroupValue_ group_value; bool vertex_value_determined; VertexValue_ vertex_value; VertexValue_ b; }; template class UnionFind { int _n; VI _par; //size if value is negative vector> _data; MergeGroupValue _merge_group_value; public: UnionFind(int n=0) : _n(n), _par(n, -1), _data(n) { for(auto &d : _data) { if constexpr(!is_same_v) { d.vertex_value_determined = false; d.b = 0; if constexpr(!is_same_v) { d.a = 1; } } } } int root(int x) { if (_par[x] < 0) return x; int r = root(_par[x]); if constexpr (!is_same_v) { if constexpr (is_same_v) { _data[x].b += _data[_par[x]].b; } else { _data[x].b =_data[x].a * _data[_par[x]].b + _data[x].b; _data[x].a *= _data[_par[x]].a; } } return _par[x] = r; } GroupValue get_group_value(int x) { return _data[root(x)].group_value; } void set_group_value(int x, GroupValue v) { _data[root(x)].group_value = v; } pair get_vertex_value(int x) { int r = root(x); if(!_data[r].vertex_value_determined) return {false, {}}; if constexpr (is_same_v) { return {true, _data[r].vertex_value + _data[x].b}; } else { return {true, _data[x].a * _data[r].vertex_value + _data[x].b}; } } bool set_vertex_value(int x, VertexValue v) { auto [determined, old] = get_vertex_value(x); if(determined) return old == v; int r = root(x); _data[r].vertex_value_determined = true; _data[r].vertex_value = (v - _data[x].b) / _data[x].a; return true; } int size(int x) { return -_par[root(x)]; } bool merge(int x, int y) { static_assert(is_same_v); x = root(x); y = root(y); if (x == y) return false; if (_par[x] > _par[y]) swap(x, y); _par[x] += _par[y]; _par[y] = x; if constexpr (!is_same_v) { _data[x].group_value = _merge_group_value(_data[x].group_value, _data[y].group_value); } return true; } pair merge(int x, int y, VertexValue b) { static_assert(!is_same_v); static_assert(is_same_v); int rx = root(x); int ry = root(y); if (rx == ry) { if(_data[x].b + b != _data[y].b) return {false, false}; return {true, false}; } b += _data[x].b; b -= _data[y].b; x = rx, y = ry; if (_par[x] > _par[y]) { swap(x, y); b = -b; } if(_data[y].vertex_value_determined) { if(_data[x].vertex_value_determined) { if(_data[x].vertex_value + b != _data[y].vertex_value) return {false, false}; } else { _data[x].vertex_value_determined = true; _data[x].vertex_value = _data[y].vertex_value - b; } } _par[x] += _par[y]; _par[y] = x; if constexpr (!is_same_v) { _data[x].group_value = _merge_group_value(_data[x].group_value, _data[y].group_value); } _data[y].b = b; return {true, true}; } pair merge(int x, int y, VertexValueCoef a, VertexValue b) { static_assert(!is_same_v); static_assert(!is_same_v); int rx = root(x); int ry = root(y); if (rx == ry) { VertexValueCoef a1 = a * _data[x].a - _data[y].a; VertexValue b1 = a * _data[x].b + b - _data[y].b; if(a1 == 0) { if(b1 != 0) return {false, false}; } else if(_data[rx].vertex_value_determined) { if(a1 * _data[rx].vertex_value + b1 != 0) return {false, false}; } else { _data[rx].vertex_value_determined = true; _data[rx].vertex_value = -b1 / a1; } return {true, false}; } b = a * _data[x].b + b; a *= _data[x].a; b = (b - _data[y].b) / _data[y].a; a /= _data[y].a; x = rx, y = ry; if (_par[x] > _par[y]) { swap(x, y); a = 1 / a; b *= -a; } if(_data[y].vertex_value_determined) { if(_data[x].vertex_value_determined) { if(a * _data[x].vertex_value + b != _data[y].vertex_value) return {false, false}; } else { _data[x].vertex_value_determined = true; _data[x].vertex_value = (_data[y].vertex_value - b) / a; } } _par[x] += _par[y]; _par[y] = x; if constexpr (!is_same_v) { _data[x].group_value = _merge_group_value(_data[x].group_value, _data[y].group_value); } _data[y].a = a; _data[y].b = b; return {true, true}; } bool same(int x, int y) { return root(x) == root(y); } VertexValue diff(int x, int y) { static_assert(!is_same_v); static_assert(is_same_v); assert(root(x) == root(y)); return _data[y].b - _data[x].b; } pair relation(int x, int y) { static_assert(!is_same_v); static_assert(!is_same_v); assert(root(x) == root(y)); VertexValueCoef a = _data[y].a / _data[x].a; VertexValue b = _data[y].b - a * _data[x].b; return {a, b}; } VVI groups() { VVI res(_n); REP(i, _n) { res[root(i)].push_back(i); } sort(ALL(res), [](const VI &a, const VI &b) { return a.size() > b.size(); }); while (res.size() && res.back().empty()) res.pop_back(); return res; } }; template using PotentialUnionFind = UnionFind; template using RelationUnionFind = UnionFind; #line 3 "Contests/yukicoder_381/yukicoder_381_f/main.cpp" /* #include */ /* using namespace atcoder; */ /* #include "KowerKoint/expansion/ac-library/all.hpp" */ void solve(){ int h, w; cin >> h >> w; VVI a(h, VI(w)); cin >> a; map mp; REP(i, h) REP(j, w) { mp[-a[i][j]].push_back(P(i, j)); } V3 two_pow(h+w+1); two_pow[0] = 1; REP(i, h+w) two_pow[i+1] = two_pow[i] * 2; int groups = h+w; UnionFind uf(h+w); MI3 ans = 0; vector> hoge; for(auto& [k, v] : mp) { hoge.emplace_back(-k, two_pow[groups-1]); for(auto [x, y] : v) { if(uf.merge(x, y+h)) groups--; } } hoge.emplace_back(0, two_pow[groups-1]); REP(i, (int)hoge.size()-1) ans += MI3(hoge[i].first) * (hoge[i].second - hoge[i+1].second); print(ans); } // generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator) int main() { // Fasterize input/output script ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(100); // scanf/printf user should delete this fasterize input/output script int t = 1; //cin >> t; // comment out if solving multi testcase for(int testCase = 1;testCase <= t;++testCase){ solve(); } return 0; }