#include using namespace std; #define all(a) begin(a), end(a) #define rall(a) rbegin(a), rend(a) #define uniq(a) (a).erase(unique(all(a)), (a).end()) #define t0 first #define t1 second using ll = long long; using ull = unsigned long long; using pll = pair; using vll = vector; constexpr double pi = 3.14159265358979323846; constexpr ll dy[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0}; constexpr ll dx[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0}; constexpr ll sign(ll a) { return (a > 0) - (a < 0); } constexpr ll fdiv(ll a, ll b) { return a / b - ((a ^ b) < 0 && a % b); } constexpr ll cdiv(ll a, ll b) { return -fdiv(-a, b); } constexpr ll pw(ll n) { return 1ll << n; } constexpr ll flg(ll n) { return 63 - __builtin_clzll(n); } constexpr ll clg(ll n) { return flg(n - 1) + 1; } constexpr ll safemod(ll x, ll mod) { return (x % mod + mod) % mod; } template using priority_queue_rev = priority_queue, greater>; template constexpr T sq(const T &a) { return a * a; } template constexpr bool chmax(T &a, const U &b) { return a < b ? a = b, true : false; } template constexpr bool chmin(T &a, const U &b) { return a > b ? a = b, true : false; } template ostream &operator<<(ostream &os, const pair &a) { os << "(" << a.first << ", " << a.second << ")"; return os; } template ostream &operator<<(ostream &os, const tuple &a) { os << "(" << get<0>(a) << ", " << get<1>(a) << ", " << get<2>(a) << ")"; return os; } template ostream &operator<<(ostream &os, const vector &a) { os << "("; for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : ""); os << ")"; return os; } template ostream &operator<<(ostream &os, const set &a) { os << "{"; for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : ""); os << "}"; return os; } template ostream &operator<<(ostream &os, const multiset &a) { os << "{"; for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : ""); os << "}"; return os; } template ostream &operator<<(ostream &os, const map &a) { os << "{"; for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : ""); os << "}"; return os; } #ifdef ONLINE_JUDGE #define dump(...) (void(0)) #else void debug() { cerr << endl; } template void debug(Head &&head, Tail &&...tail) { cerr << head; if (sizeof...(Tail)) cerr << ", "; debug(tail...); } #define dump(...) cerr << __LINE__ << ": " << #__VA_ARGS__ << " = ", debug(__VA_ARGS__) #endif struct rep { struct itr { ll v; itr(ll v) : v(v) {} void operator++() { ++v; } ll operator*() const { return v; } bool operator!=(itr i) const { return v < *i; } }; ll l, r; rep(ll l, ll r) : l(l), r(r) {} rep(ll r) : rep(0, r) {} itr begin() const { return l; }; itr end() const { return r; }; }; struct per { struct itr { ll v; itr(ll v) : v(v) {} void operator++() { --v; } ll operator*() const { return v; } bool operator!=(itr i) const { return v > *i; } }; ll l, r; per(ll l, ll r) : l(l), r(r) {} per(ll r) : per(0, r) {} itr begin() const { return r - 1; }; itr end() const { return l - 1; }; }; struct io_setup { static constexpr int PREC = 20; io_setup() { cout << fixed << setprecision(PREC); cerr << fixed << setprecision(PREC); }; } iOS; template struct modint { ll val; modint(ll val = 0) : val(val >= 0 ? val % M::mod : (M::mod - (-val) % M::mod) % M::mod) {} static ll mod() { return M::mod; } modint inv() const { ll a = val, b = M::mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return u; } modint pow(ll k) const { modint ret = 1, mul = val; while (k) { if (k & 1) ret *= mul; mul *= mul; k >>= 1; } return ret; } modint &operator+=(const modint &a) { if ((val += a.val) >= M::mod) val -= M::mod; return *this; } modint &operator-=(const modint &a) { if ((val += M::mod - a.val) >= M::mod) val -= M::mod; return *this; } modint &operator*=(const modint &a) { (val *= a.val) %= M::mod; return *this; } modint &operator/=(const modint &a) { return *this *= a.inv(); } modint operator+() const { return *this; } modint operator-() const { return modint(-val); } friend bool operator==(const modint &a, const modint &b) { return a.val == b.val; } friend bool operator!=(const modint &a, const modint &b) { return rel_ops::operator!=(a, b); } friend modint operator+(const modint &a, const modint &b) { return modint(a) += b; } friend modint operator-(const modint &a, const modint &b) { return modint(a) -= b; } friend modint operator*(const modint &a, const modint &b) { return modint(a) *= b; } friend modint operator/(const modint &a, const modint &b) { return modint(a) /= b; } friend istream &operator>>(istream &is, modint &a) { ll val; is >> val; a = modint(val); return is; } friend ostream &operator<<(ostream &os, const modint &a) { return os << a.val; } }; struct _998244353 { constexpr static ll mod = 998244353; }; struct _1000000007 { constexpr static ll mod = 1000000007; }; using modint998244353 = modint<_998244353>; using modint1000000007 = modint<_1000000007>; struct arbitrary { static ll mod; }; ll arbitrary::mod; template struct fenwick_tree { vector data; fenwick_tree(ll n) : data(n + 1, V()) {} void add(ll i, const V &x) { for (++i; i < (ll)data.size(); i += i & -i) data[i] += x; } V sum(ll i) const { V ret = V(); for (; i > 0; i -= i & -i) ret += data[i]; return ret; } V sum(ll l, ll r) const { return sum(r) - sum(l); } }; template ll bisect(ll ok, ll ng, F f) { while (abs(ok - ng) > 1) { ll mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } return ok; } template struct unionfind { using V = typename P::V; ll n; vector ps; vector val; unionfind(const vector &val) : n(val.size()), ps(n, -1), val(val) {} unionfind(ll n, const V &a = {}) : unionfind(vector(n, a)) {} ll find(ll i) { if (ps[i] < 0) return i; return ps[i] = find(ps[i]); } ll size(ll i) { return -ps[find(i)]; } void unite(ll i, ll j) { if ((i = find(i)) == (j = find(j))) return; if (-ps[i] < -ps[j]) swap(i, j); ps[i] += ps[j]; P::merge(val[i], val[j]); ps[j] = i; } bool same(ll i, ll j) { return find(i) == find(j); } V &operator[](ll i) { return val[find(i)]; } vector> groups() { vector> ret(n); for (ll i : rep(n)) ret[find(i)].push_back(i); ret.erase(remove_if(all(ret), [](const vector &v) { return v.empty(); }), ret.end()); return ret; } }; struct normal_uf { using V = struct {}; static void merge(V &a, const V &b) {} }; template struct segtree { using V = typename P::V; ll n, size; vector val; segtree(ll n) : segtree(vector(n, P::e())) {} segtree(const vector &src) : n(src.size()) { size = pw(clg(n)); val.resize(size << 1); copy(all(src), val.begin() + size); for (ll i : per(1, size)) val[i] = P::op(val[i << 1 | 0], val[i << 1 | 1]); } void set(ll i, const V &a) { val[i += size] = a; while (i >>= 1) val[i] = P::op(val[i << 1 | 0], val[i << 1 | 1]); } V get(ll i) const { return val[i + size]; } V prod(ll l, ll r) const { V a = P::e(), b = P::e(); for (l += size, r += size; l < r; l >>= 1, r >>= 1) { if (l & 1) a = P::op(a, val[l++]); if (r & 1) b = P::op(val[--r], b); } return P::op(a, b); } template ll max_right(ll l, F f) const { if (l == n) return n; V a = P::e(); l += size; do { while (~l & 1) l >>= 1; if (!f(P::op(a, val[l]))) { while (l < size) { l = l << 1; if (f(P::op(a, val[l]))) a = P::op(a, val[l++]); } return l - size; } a = P::op(a, val[l++]); } while ((l & -l) != l); return n; } template ll min_left(ll r, F f) const { if (r == 0) return 0; V a = P::e(); r += size; do { r--; while (r > 1 && r & 1) r >>= 1; if (!f(P::op(val[r], a))) { while (r < size) { r = r << 1 | 1; if (f(P::op(val[r], a))) a = P::op(val[r--], a); } return r + 1 - size; } a = P::op(val[r], a); } while ((r & -r) != r); return 0; } }; using mint = modint998244353; struct int_div { using V = pair; static V op(V a, V b) { return {a.first * mint(10).pow(b.second) + b.first, a.second + b.second}; } static V e() { return {0, 0}; } }; template struct combination { vector fact, finv, inv; combination(ll n) : fact(n + 1), finv(n + 1), inv(n + 1) { fact[0] = fact[1] = finv[0] = finv[1] = inv[1] = 1; for (ll i : rep(2, n + 1)) { fact[i] = fact[i - 1] * i; inv[i] = -inv[mint::mod() % i] * (mint::mod() / i); finv[i] = finv[i - 1] * inv[i]; } } mint P(ll n, ll r) { return r < 0 || n < r ? 0 : (fact[n] * finv[n - r]); } mint C(ll n, ll r) { return P(n, r) * finv[r]; } mint H(ll n, ll r) { return C(n + r - 1, r); } mint catalan(ll n) { return C(2 * n, n) / (n + 1); } }; ll mex(const vll &v) { ll n = v.size(); vll cnt(n); for (ll vi : v) { if (vi < n) ++cnt[vi]; } for (ll i : rep(n)) { if (cnt[i] == 0) return i; } return n; } std::vector get_prime_table(int n) { std::vector ret(n + 1, true); if (n >= 0) { ret[0] = false; } if (n >= 1) { ret[1] = false; } for (int i = 2; i * i <= n; i++) { if (!ret[i]) { continue; } for (int j = i << 1; j <= n; j += i) { ret[j] = false; } } return ret; } int main() { ll n; cin >> n; vll p(n); for (ll i : rep(n)) cin >> p[i], --p[i]; fenwick_tree ft(n); fenwick_tree et(n); mint ans = 0; for (ll i : rep(n)) { mint cur = ft.sum(p[i] + 1, n) / mint(2).pow(i) + et.sum(p[i]); dump(cur * mint(2).pow(n - 1)); ans += cur; ft.add(p[i], mint(2).pow(i)); et.add(p[i], 1); } cout << mint(2).pow(n - 1) * (n * (n - 1) / 2 - ans) << endl; }