// #pragma GCC target("avx") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include using namespace std; #define rep(i,n) for(int i = 0; i < (int)n; i++) #define FOR(n) for(int i = 0; i < (int)n; i++) #define repi(i,a,b) for(int i = (int)a; i < (int)b; i++) #define all(x) x.begin(),x.end() //#define mp make_pair #define vi vector #define vvi vector #define vvvi vector #define vvvvi vector #define pii pair #define vpii vector> template void chmax(T &a, const T &b) {a = (a > b? a : b);} template void chmin(T &a, const T &b) {a = (a < b? a : b);} using ll = long long; using ld = long double; using ull = unsigned long long; const ll INF = numeric_limits::max() / 2; const ld pi = 3.1415926535897932384626433832795028; const ll mod = 998244353; int dx[] = {1, 0, -1, 0, -1, -1, 1, 1}; int dy[] = {0, 1, 0, -1, -1, 1, -1, 1}; #define int long long template struct Modular_Int { int x; Modular_Int() = default; Modular_Int(int x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {} int val() const { return (x%MOD+MOD)%MOD; } int get_mod() const { return MOD; } Modular_Int& operator^=(int d) { Modular_Int ret(1); int nx = x; while(d) { if(d&1) ret *= nx; (nx *= nx) %= MOD; d >>= 1; } *this = ret; return *this; } Modular_Int operator^(int d) const {return Modular_Int(*this) ^= d;} Modular_Int pow(int d) const {return Modular_Int(*this) ^= d;} //use this basically Modular_Int inv() const { return Modular_Int(*this) ^ (MOD-2); } //only if the module number is not prime //Don't use. This is broken. // Modular_Int inv() const { // int a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0; // while(b) { // int t = a/b; // a -= t*b, swap(a, b); // u -= t*v, swap(u, v); // } // return Modular_Int(u); // } Modular_Int& operator+=(const Modular_Int other) { if((x += other.x) >= MOD) x -= MOD; return *this; } Modular_Int& operator-=(const Modular_Int other) { if((x -= other.x) < 0) x += MOD; return *this; } Modular_Int& operator*=(const Modular_Int other) { int z = x; z *= other.x; z %= MOD; x = z; if(x < 0) x += MOD; return *this; } Modular_Int& operator/=(const Modular_Int other) { return *this = *this * other.inv(); } Modular_Int& operator++() { x++; if (x == MOD) x = 0; return *this; } Modular_Int& operator--() { if (x == 0) x = MOD; x--; return *this; } Modular_Int operator+(const Modular_Int other) const {return Modular_Int(*this) += other;} Modular_Int operator-(const Modular_Int other) const {return Modular_Int(*this) -= other;} Modular_Int operator*(const Modular_Int other) const {return Modular_Int(*this) *= other;} Modular_Int operator/(const Modular_Int other) const {return Modular_Int(*this) /= other;} Modular_Int& operator+=(const int other) {Modular_Int other_(other); *this += other_; return *this;} Modular_Int& operator-=(const int other) {Modular_Int other_(other); *this -= other_; return *this;} Modular_Int& operator*=(const int other) {Modular_Int other_(other); *this *= other_; return *this;} Modular_Int& operator/=(const int other) {Modular_Int other_(other); *this /= other_; return *this;} Modular_Int operator+(const int other) const {return Modular_Int(*this) += other;} Modular_Int operator-(const int other) const {return Modular_Int(*this) -= other;} Modular_Int operator*(const int other) const {return Modular_Int(*this) *= other;} Modular_Int operator/(const int other) const {return Modular_Int(*this) /= other;} bool operator==(const Modular_Int other) const {return (*this).val() == other.val();} bool operator!=(const Modular_Int other) const {return (*this).val() != other.val();} bool operator==(const int other) const {return (*this).val() == other;} bool operator!=(const int other) const {return (*this).val() != other;} Modular_Int operator-() const {return Modular_Int(0LL)-Modular_Int(*this);} //入れ子にしたい // friend constexpr istream& operator>>(istream& is, mint& x) noexcept { // int X; // is >> X; // x = X; // return is; // } // friend constexpr ostream& operator<<(ostream& os, mint& x) { // os << x.val(); // return os; // } }; // const int MOD_VAL = 1e9+7; const int MOD_VAL = 998244353; using mint = Modular_Int; istream& operator>>(istream& is, mint& x) { int X; is >> X; x = X; return is; } ostream& operator<<(ostream& os, mint& x) { os << x.val(); return os; } // istream& operator<<(istream& is, mint &a) { // int x; // is >> x; // a = mint(x); // return is; // } // ostream& operator<<(ostream& os, mint a) { // os << a.val(); // return os; // } // vector f = {1}, rf = {1}; // void init(int n) { // f.resize(n, 0); // rf.resize(n, 0); // f[0] = 1; // repi(i, 1, n) f[i] = (f[i - 1] * i); // repi(i, 0, n) rf[i] = f[i].inv(); // } // mint P(int n, int k) { // assert(n>=k); // while(n > f.size()-1) { // f.push_back(f.back() * f.size()); // rf.push_back(f.back().inv()); // } // return f[n] * f[n-k]; // } // mint C(int n, int k) { // assert(n>=k); // while(n > f.size()-1) { // f.push_back(f.back() * f.size()); // rf.push_back(f.back().inv()); // } // return f[n]*rf[n-k]*rf[k]; // } // mint H(int n, int k) { // assert(n>=1); // return C(n+k-1, k); // } // mint Cat(int n) { // return C(2*n, n)-C(2*n, n-1); // } struct RSQ { int n; vector dat; RSQ(int n_) : n(), dat(n_ * 4, 0) { int x = 1; while(n_ > x) { x *= 2; } n = x; } void update(int i, int x) { i += n - 1; dat[i] = x; while(i) { i = (i - 1) / 2; dat[i] = dat[i * 2 + 1] + dat[i * 2 + 2]; } } void add(int i, int x) { i += n - 1; dat[i] += x; while(i) { i = (i - 1) / 2; dat[i] = dat[i * 2 + 1] + dat[i * 2 + 2]; } } // set(i, a) = add(i, a - get(i)) int get(int i) { return dat[i + n - 1]; } // [a, b) 蟾ヲ蜊企幕蛹コ髢� int query(int a, int b) {return query_sub(a, b, 0, 0, n);} int query_sub(int a, int b, int k, int l, int r) { if(r <= a || b <= l) { return 0; }else if(a <= l && r <= b) { return dat[k]; }else { int vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2); int vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r); return vl + vr; } } }; template vector compress(vector &X) { vector vals = X; sort(vals.begin(), vals.end()); vals.erase(unique(vals.begin(), vals.end()), vals.end()); for (int i = 0; i < (int)X.size(); i++) { X[i] = lower_bound(vals.begin(), vals.end(), X[i]) - vals.begin(); } //vals[X[i]] = original X[i] return vals; } int the_number_of_inversions(vector a) { int n = (int)a.size(); compress(a); RSQ tree(n); int inversion = 0; FOR(n) { inversion += tree.query(a[i]+1, n+10); tree.add(a[i], 1); } return inversion; } namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal template struct segtree { public: segtree() : segtree(0) {} explicit segtree(int n) : segtree(std::vector(n, e())) {} explicit segtree(const std::vector& v) : _n((int)v.size()) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector(2 * size, e()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) const { assert(0 <= p && p < _n); return d[p + size]; } S prod(int l, int r) const { assert(0 <= l && l <= r && r <= _n); S sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() const { return d[1]; } template int max_right(int l) const { return max_right(l, [](S x) { return f(x); }); } template int max_right(int l, F f) const { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(int r) const { return min_left(r, [](S x) { return f(x); }); } template int min_left(int r, F f) const { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector d; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } }; using S = mint; S op(S x, S y) { return x + y; } S e() { return 0; } void solve() { int n; cin >> n; vi p(n); FOR(n) { cin >> p[i]; --p[i]; } mint ans = mint(the_number_of_inversions(p)) * mint(2).pow(n-1); segtree seg(n); rep(i, n) { mint sum = seg.prod(p[i], n); ans -= sum * mint(2).pow(n-1-i); seg.set(p[i], mint(2).pow(i)); } cout << ans << endl; } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); solve(); return 0; }