// 无区间更新的线段树 package main import ( "bufio" "fmt" "os" ) func main() { // https://yukicoder.me/submissions/845112 // op1:赋值 // !op2:查询区间最小值处的索引(线段树上二分即可) in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, q int fmt.Fscan(in, &n, &q) nums := make([]E, n) for i := range nums { fmt.Fscan(in, &nums[i]) } seg := NewSegmentTree(nums) for i := 0; i < q; i++ { var op, left, right int fmt.Fscan(in, &op, &left, &right) if op == 1 { left-- right-- tmp := seg.Get(left) seg.Set(left, seg.Get(right)) seg.Set(right, tmp) } else { left-- min_ := seg.Query(left, right) res := seg.MaxRight(left, func(x int) bool { return x > min_ }) fmt.Fprintln(out, res+1) } } } type E = int const INF int = 1e18 func (*SegmentTree) e() E { return INF } func (*SegmentTree) op(a, b E) E { return min(a, b) } type SegmentTree struct { n, log, size int seg []E } func NewSegmentTree(leaves []E) *SegmentTree { res := &SegmentTree{} n := len(leaves) log := 1 for 1< 0; i-- { seg[i] = res.op(seg[2*i], seg[2*i+1]) } res.n = n res.log = log res.size = size res.seg = seg return res } func (st *SegmentTree) Get(index int) E { if index < 0 || index >= st.n { return st.e() } return st.seg[index+st.size] } func (st *SegmentTree) Set(index int, value E) { if index < 0 || index >= st.n { return } index += st.size st.seg[index] = value for index >>= 1; index > 0; index >>= 1 { st.seg[index] = st.op(st.seg[2*index], st.seg[2*index+1]) } } // [start, end) func (st *SegmentTree) Query(start, end int) E { if start < 0 { start = 0 } if end > st.n { end = st.n } if start >= end { return st.e() } leftRes, rightRes := st.e(), st.e() start += st.size end += st.size for start < end { if start&1 == 1 { leftRes = st.op(leftRes, st.seg[start]) start++ } if end&1 == 1 { end-- rightRes = st.op(st.seg[end], rightRes) } start >>= 1 end >>= 1 } return st.op(leftRes, rightRes) } func (st *SegmentTree) QueryAll() E { return st.seg[1] } // maxRight returns the maximum r such that [start, r) satisfies the predicate. func (st *SegmentTree) MaxRight(start int, predicate func(E) bool) int { if start == st.n { return st.n } start += st.size res := st.e() for { for start&1 == 0 { start >>= 1 } if !predicate(st.op(res, st.seg[start])) { for start < st.size { start = 2 * start if predicate(st.op(res, st.seg[start])) { res = st.op(res, st.seg[start]) start++ } } return start - st.size } res = st.op(res, st.seg[start]) start++ if (start & -start) == start { break } } return st.n } // minLeft returns the minimum l such that [l, end) satisfies the predicate. func (st *SegmentTree) MinLeft(end int, predicate func(E) bool) int { if end == 0 { return 0 } end += st.size sm := st.e() for { end-- for end > 1 && end&1 == 1 { end >>= 1 } if !predicate(st.op(st.seg[end], sm)) { for end < st.size { end = 2*end + 1 if predicate(st.op(st.seg[end], sm)) { sm = st.op(st.seg[end], sm) end-- } } return end + 1 - st.size } sm = st.op(st.seg[end], sm) if end&-end == end { break } } return 0 } // !如果 Monoid 满足交换律(commute), 可以求出 op(nums[i xor x]...) (l<=i= end { break } if start&1 == 1 { x = st.op(x, st.seg[(st.size>>k)+((start)^xor)]) start++ } if end&1 == 1 { end-- x = st.op(x, st.seg[(st.size>>k)+((end)^xor)]) } start, end, xor = start/2, end/2, xor/2 } return x } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a > b { return a } return b }