#include #include using namespace std; using namespace atcoder; using ll=int; using ld=long double; ld pie=3.14159265359; ll inf=1001000000; ll mod=1000000007; // エラトステネスの篩 struct Eratosthenes { // テーブル vector isprime; // 整数 i を割り切る最小の素数 vector minfactor; vectormobius; // コンストラクタで篩を回す Eratosthenes(ll N) : isprime(N+1, true), minfactor(N+1, -1), mobius(N+1,1) { // 1 は予めふるい落としておく isprime[1] = false; minfactor[1] = 1; // 篩 for (ll p = 2; p <= N; ++p) { // すでに合成数であるものはスキップする if (!isprime[p]) continue; // p についての情報更新 minfactor[p] = p; mobius[p]=-1; // p 以外の p の倍数から素数ラベルを剥奪 for (ll q = p * 2; q <= N; q += p) { // q は合成数なのでふるい落とす isprime[q] = false; // q は p で割り切れる旨を更新 if (minfactor[q] == -1) minfactor[q] = p; if ((q / p) % p == 0) mobius[q] = 0; else mobius[q] = -mobius[q]; } } } // 高速素因数分解 // pair (素因子, 指数) の vector を返す vector> factorize(ll n) { vector> res; while (n > 1) { ll p = minfactor[n]; ll exp = 0; // n で割り切れる限り割る while (minfactor[n] == p) { n /= p; ++exp; } res.emplace_back(p, exp); } return res; } vectordivisors(ll n){ vectorres({1}); auto pf=factorize(n); for (auto p : pf) { ll s=(ll)res.size(); for (ll i = 0; i < s; i++) { ll v=1; for (ll j = 0; j < p.second; j++) { v*=p.first; res.push_back(res[i]*v); } } } return res; } }; int main(){ ll t; cin >> t; vectorans(10000005,0); ans[2]=1; Eratosthenes er(10000005); for (ll i = 3; i < ans.size(); i++) { vectorx=er.divisors(i); long long y=x.size()-2; ans[i]=ans[i-1]+y*2+(i-1-y); } for (ll o = 0; o < t; o++) { ll n; cin >> n; cout << ans[n] << endl; } }